Left-Right Symmetry: Minimal Model, Radiative Neutrino Mass, and Leptogenesis

A. Thapa In colaboration with K.S. Babu

Department of Physics Oklahoma State University

Particle Physics on the Plains 2018

Motivation

- 2 Radiative $\nu_{\rm R}$ mass generation in Left-Right Symmetric Model
- 3 ν masses and oscillation
- 4 Baryogenesis through Resonant Leptogenesis

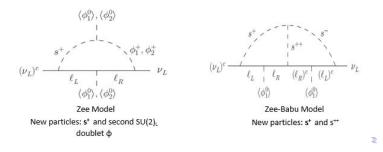
Motivation for LR Symmetric Models

- In Standard Model $M_{\nu} = 0$. But, beam of ν can oscillate in vacuum into ν of different flavors. $\nu_{aL} \leftrightarrow \nu_{bL}$. This implies $m_{\nu} \neq 0$, and requires new physics beyond SM.
- No ν_R in SM. Parity is explicitly broken by SM. LR symmetric model restores Parity.
- This model is based on $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$. ν_R exists for $SU(2)_R$ multiplet. $SU(2)_R$ breaking gives heavy Majorana right handed neutrino. Thus, smallness of left-handed neutrinos is naturally realized via see-saw mechanisms.
- In SM Y (hypercharge) is arbitrary quantum number whereas in LR symmetric model Y arises more coherently from less arbitrary quantity B-L.

$$Y = T_R^3 + \frac{B-L}{2}$$

• An attractive way to understand matter antimatter asymmetry in the universe is through leptogenesis. Baryon asymmetry is defined as:

$$\eta_B \equiv \frac{n_B}{n_{\gamma}} = 6.1 \substack{+0.3 \\ -0.2} \times 10^{-10}$$


- Well motivated due to neutrino oscillation
- Leptogenesis can be done in the framework of seesaw mechanism
- Radiative RH neutrino mass naturally leads to resonant leptogenesis. Thus, observed matter-antimatter asymmetry of the universe is understood.

Generation of ν mass

• Seesaw Mechanism: Introduce ν_R . But it requires Yukawa coupling to be same order as of quark and charged leptons. But, observation shows $m_{\nu} << m_q$ or m_l .

Introduce large Majorana mass scale Λ to suppress the neutrino mass via see-saw mechanism as $<\phi>^2/\Lambda$.

• Radiative correction: Assumes $m_{\nu} = 0$ at tree level as SM and generates small mass of neutrino at 1-loop or 2-loop introducing new heavy scalar fields.

5/19

Left-Right Symmetric Model

Gauge Group:

$$SU(3)_{C} \otimes SU(2)_{L} \otimes SU(2)_{R} \otimes U(1)_{B-L}$$

Fermion Representation:

 $Q_L = \begin{pmatrix} u \\ d \end{pmatrix}_L \sim (2, 1, 1/3) \qquad Q_R = \begin{pmatrix} u \\ d \end{pmatrix}_R \sim (1, 2, 1/3) \qquad \psi_L = \begin{pmatrix} v_e \\ e \end{pmatrix}_L \sim (2, 1, -1) \qquad \psi_R = \begin{pmatrix} v_e \\ e \end{pmatrix}_R \sim (1, 2, -1)$

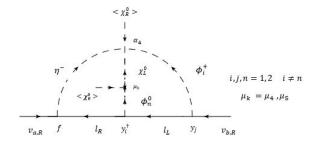
Higgs Representation:

Under L-R symmetry:

 $\psi_L \leftrightarrow \psi_R \qquad \chi_L \leftrightarrow \chi_R \qquad \phi \leftrightarrow \phi^{\dagger} \qquad \eta^+ \leftrightarrow \eta^+ \qquad W^{\pm} \leftrightarrow W^{\pm}$

• Interaction of scalar η^+ with fermions:

 $\mathcal{X}_{\mathsf{Y}} \supset \, f_{ab} \, [\, (\psi^i_{aL} \mathsf{C} \, \psi^j_{bL}) \, \epsilon_{ij} \, \eta^+ + (\psi^i_{aR} \mathsf{C} \, \psi^j_{bR}) \, \epsilon_{ij} \, \eta^+ \,] + \mathsf{h.\,c.}$


• Interaction of scalar ϕ with ferminos:

$$\mathfrak{X}_{\mathsf{Y}} \supset \mathcal{Y} \ \overline{\psi_L} \phi \ \psi_R + \widetilde{\mathcal{Y}} \ \overline{\psi_L} \ \widetilde{\phi} \ \psi_R + \mathsf{h.c.}$$

• Self Interaction of Higgs particles by Higgs potential: $\mathfrak{Z}_{H_{GF}} = Tr[(D_{\mu}\phi)^{\dagger}(D_{\mu}\phi)] + |D_{\mu}\chi_{L}|^{2} + |D_{\mu}\chi_{R}|^{2} + V(\phi,\chi_{L},\chi_{R},\eta)$ Higgs Potential:

$$\begin{split} V(\phi,\chi_L,\chi_R,\eta) &= V(\phi) + V(\chi_L,\chi_R) + V(\eta) + V(cross - terms) \\ & \Rightarrow \ \mu_4 \left[\chi_L^{\dagger} \phi \ \chi_R + \chi_R^{\dagger} \phi^{\dagger} \ \chi_L \right] + \mu_5 \left[\chi_L^{\dagger} \widetilde{\phi} \ \chi_R + \chi_R^{\dagger} \widetilde{\phi}^{\dagger} \ \chi_L \right] \\ & + (\alpha_4 \left[\chi_L^{\dagger} i \ \tau_2 \phi \ \chi_R \eta^{-} + \chi_R^{\dagger} i \ \tau_2 \phi^{\dagger} \ \chi_L \eta^{-} \right] + h. c.) \end{split}$$

Loop Diagram ν_R mass generation

$$\begin{split} M_{\phi_{j}^{*}} & \text{ and } M_{\theta_{h}^{*}} \sim M >> M_{\chi_{L}^{0}}, M_{\eta} \\ (M_{\nu R})_{\theta b} \approx \frac{1}{(16\pi^{2})^{2}} c_{ij} (fy_{i}^{\dagger}y_{j} + y_{j}^{T}y_{i}^{*}f^{T}) \frac{\alpha_{4} \, \mu_{k} \, v_{R}^{2}}{M^{2}(M^{2} - M_{\chi_{L}^{0}}^{2})} \left[2M^{2} \left(-1 + Log \left(\frac{M_{\eta}^{2}}{M^{2}} \right) \right) + M_{\chi_{L}^{0}}^{2} \left\{ -2 + \frac{\pi^{2}}{3} + 2Log \left(\frac{M_{\eta}^{2}}{M^{2}} \right) + Log \left(\frac{M_{\eta}^{2}}{M^{2}} \right) \left\{ 1 + Log \left(\frac{M_{\eta}^{2}}{M^{2}} \right) \right\} \right\} \right] \end{split}$$

$$M_{\nu,R} \sim \frac{f y^2}{\left(16 \pi^2\right)^2} v_R$$

 After Symmetry breaking masses reads,

Charged Lepton: $M_l = y \kappa' + \tilde{y} \kappa^*$

Dirac Mass: $M_{v,D} = y\kappa + \tilde{y}\kappa'^*$

where
$$\langle \phi_1^0
angle = \kappa$$
 and $\langle \phi_2^0
angle = \kappa'$

In the limit $\,\widetilde{y}
ightarrow 0$, $M_{l^+} pprox \, y \, \kappa' \, M_{v,D} pprox \, y \, \kappa$

Neutrino mass matrix reads:

$$\begin{pmatrix} v & v^c \end{pmatrix} \begin{pmatrix} M_L^M & M_{v,D} \\ (M_{v,D})^T & M_{v,R} \end{pmatrix} \begin{pmatrix} v \\ v^c \end{pmatrix}$$
$$M_v^{light} = M_L^M - (M_{v,D}) (M_{v,R})^{-1} (M_{v,D})^T = M_0 \left[-M_I + \beta M_{II} \right]$$

$$\begin{split} M_{v}^{light} &= M_{0} \left[-M_{I} + \beta M_{II} \right] \\ &= M_{0} \left\{ + \beta \begin{bmatrix} 0 & c & a \\ c & 0 & b \\ a & b & 0 \end{bmatrix} \\ &- \begin{bmatrix} m_{e} & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{\tau} \end{bmatrix} \begin{bmatrix} 0 & c & a \\ c & 0 & b \\ a & b & 0 \end{bmatrix}^{-1} \begin{bmatrix} m_{e} & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{\tau} \end{bmatrix} \right\} \\ &\beta &= |\beta| \ e^{I\theta} \ , \ c &= f_{et} m_{\mu}^{2} \ , \ a &= f_{et} m_{\tau}^{2} \ , \ b &= f_{\mu t} m_{\tau}^{2} \end{split}$$

Oscillation fit

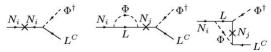
With the choice of parameters,

$$x_1 = \frac{f_{e\mu}}{f_{e\tau}} = 15.815,$$
 $x_2 = \frac{f_{\mu\tau}}{f_{e\tau}} = 0.46,$ $|\beta| = 0.007,$ $\theta = 1.94\pi$

 $M_{\nu}^{light} = M_0 \begin{array}{cccc} 4.99306 \times 10^{-6} & 0.0194153 - 0.00399911 \pm & 0.340289 - 0.0634688 \pm \\ 0.0194153 - 0.00399911 \pm & 0.943868 & -0.837058 - 0.030187 \pm \\ 0.340289 - 0.0634688 \pm & -0.837058 - 0.030187 \pm & 1.059 \end{array}$

$$\frac{\Delta m_{21}^2}{\Delta m_{31}^2} \approx \frac{1}{35}, \quad \theta_{13} \approx 8.30^\circ, \qquad \theta_{12} \approx 33.57^\circ, \qquad \theta_{23} \approx 41.2^\circ, \qquad \delta \approx 1.27 \ \pi$$

$m_3 > m_2$	$> m_1 (l)$	Iormal	hierarch	y)
-------------	-------------	--------	----------	----


Parameter	Fit (exp.) 1 σ	Fit Theo.	
$\frac{\Delta m_{21}^2}{\Delta m_{31}^2}$	0.0296	0.0296 ± 0.0025	
θ_{12}	$33.62^{+0.78}_{-0.76}$	$33.62^{+0.75}_{-0.80}$	
θ_{13}	$8.54^{+0.15}_{-0.15}$	$8.54^{+0.15}_{-0.19}$	
θ_{23}	$40.68^{+1.9}_{-3.6}$	$40.68^{+0.95}_{-1.07}$	
δ/π(3σ)	1.38 (1.0 ,1.9)	(1, 1.87)	

Leptogenesis Ingredients

• Lepton Asymmetry is generated by CP violation in N_R decay. $\epsilon_1 = \frac{\Gamma(N_1 \to \phi L) - \Gamma(N_1 \to \phi^{\dagger} \bar{L})}{\Gamma(V_1 \to V_1) - \Gamma(V_1 \to \phi^{\dagger} \bar{L})}$

$$\overline{\Gamma}_1 = \frac{\Gamma(N_1 \to \phi L) + \Gamma(N_1 \to \phi^{\dagger} \overline{L})}{\Gamma(N_1 \to \phi^{\dagger} \overline{L})}$$

• Asymmetry arises from the interference of tree-level and one loop amplitudes.

• Out-of-equilibrium condition

$$\Gamma_{N_1} \leq H(T = \mathsf{M}_{N_1})$$

- Conversion of L into B through Sphaleron processes
- For nearly degenerate heavy Majorana states (Resonant Leptogenesis), the CP asymmetry gets enhanced and is given by:

$$\epsilon_{2} = \frac{lm \left(\hat{Y}^{\dagger} \hat{Y}\right)_{32}^{2}}{\left(\hat{Y}^{\dagger} \hat{Y}\right)_{22} \left(\hat{Y}^{\dagger} \hat{Y}\right)_{33}} \frac{(M_{3}^{2} - M_{2}^{2})M_{2}\Gamma_{3}}{(M_{3}^{2} - M_{2}^{2})^{2} + M_{2}^{2}\Gamma_{3}^{2}} \quad , \quad \Gamma_{i} = \frac{\left(\hat{Y}^{\dagger} \hat{Y}\right)_{ii} M_{i}}{8 \pi}$$

12/19

RH Neutrino Mass Matrix and Yukawa Matrix

• For $\tilde{y} = 0$ and y diagonal and Real,

$$M_{\nu,R} = (f \ y^2 + y^2 f^{\mathsf{T}}) J = J \begin{bmatrix} 0 & \varepsilon & a \\ \varepsilon & 0 & b \\ a & b & 0 \end{bmatrix} \qquad \varepsilon = f_{et} \frac{m_{\mu}^2}{k'^2} , a = f_{et} \frac{m_{\tau}^2}{k'^2} , b = f_{\mu t} \frac{m_{\tau}^2}{k'^2}$$

Can be diagonalized by O^TMO = M_{diag}

$$M_1 = J\lambda_1$$
, $M_2 = J\lambda_2$, $M_3 = J\lambda_3$

$$\lambda_1 = \frac{2 a b \varepsilon}{a^2 + b^2}, \qquad \lambda_2 = \sqrt{a^2 + b^2} + \frac{a b \varepsilon}{a^2 + b^2}, \qquad \lambda_3 = \sqrt{a^2 + b^2} - \frac{a b \varepsilon}{a^2 + b^2}$$

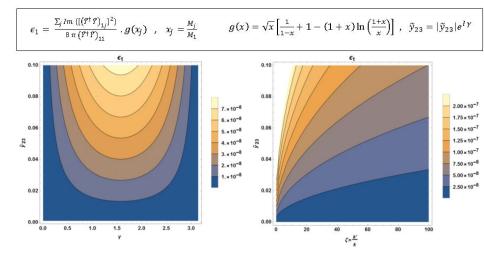
- This leads to mass splitting in two heavy N2 and N3 states unlike two lighter states.
- f is real anti-symmetric matrix. To generate CP violation, introduce ỹ « y. Writing Yukawa Neutrino interaction in mass basis. (ỹ is the coupling of scalar φ̃ with fermions)

$$\mathcal{I}_{\mathbb{Y}} \supset \phi \ \overline{v_{iL}} \ \widehat{Y} N_j$$
 where $\widehat{Y} = \frac{k \ y + k' \ \widetilde{y}}{\sqrt{k^2 + k'^2}} \ . O$

Lower Bound on M_1

$$\Gamma_{D} < H (T = M_{1})$$

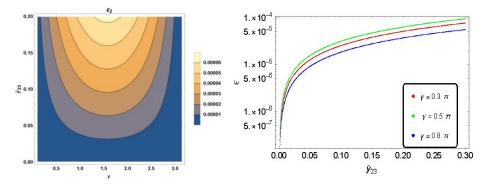
$$\frac{(\hat{Y}Y)_{11} M_{1}}{8 \pi} < 1.66 g_{*}^{1/2} \frac{T^{2}}{M_{pl}} \Big|_{T = M_{pl}}$$
For $\zeta = 100$, $M_{1} \ge 4 \times 10^{6} \text{ GeV}$


$$From neutrino oscillation,$$

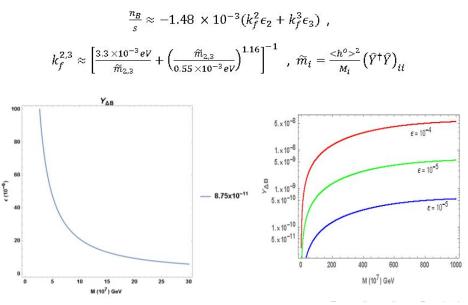
$$x_{1} = \frac{f_{e\mu}}{f_{e\tau}} = 15.815, \quad x_{2} = \frac{f_{\mu\tau}}{f_{e\tau}} = 0.46$$

$$M_{2} \ge 8.77 \times 10^{7} \text{ GeV}$$

$$M_{3} \ge 8.43 \times 10^{7} \text{ GeV}$$


CP Asymmetry with N_1 decay

 N_1 decay doesn't produce Baryon Asymmetry.


・ロ ・ ・ 一部 ・ ・ 目 ・ ・ 目 ・ の へ ()
15/19

CP Asymmetry with Resonant Leptogenesis

<ロト < 回ト < 目ト < 目ト < 目ト 目 の Q @ 16 / 19

Baryon Asymmetry

- LR Symmetric model with Higgs doublet having no triplet is studied.
- η^+ is added as doublet by itself cannot generate RH ν Majorana mass.
- $m_{\nu R} << m_{w R}$ due to 2-loop suppression. However, this is still large enough to realize see-saw.
- Resonant leptogenesis naturally gives the observed Baryon asymmetry.

• This model allows parameters which is in good agreement with neutrino oscillation experiment.

Thank You