WIMP 暗黒物質の現状

永田 夏海 (東京大学)

新テラスケール研究会 2018年7月27日 名古屋大学

Weakly-Interacting Massive Particles (WIMPs)

- ▶ 電気的に中性かつカラー荷を持たない
- ▶ 安定
- ▶ 電弱スケール程度の質量
- 電弱相互作用程度の強さの相互作用を持つ

暗黒物質密度の観測値を熱残存量で 自然に説明できる。

TeV-scale physics and WIMP

WIMP暗黒物質はテラスケールの新物理を予言した。

<u>暗黒物質残存量</u>

$$\Omega_{\rm DM} h^2 \simeq \frac{3 \times 10^{-27} \rm cm^3 s^{-1}}{\langle \sigma_{\rm ann} v_{\rm rel} \rangle}$$

$$\Omega_{\rm DM} h^2 = 0.12$$
 $\diamond \langle \sigma_{\rm ann} v_{\rm rel} \rangle \simeq 10^{-9} \ {\rm GeV}^{-2}$

例)
$$\langle \sigma_{\rm ann} v_{\rm rel} \rangle \simeq \frac{\alpha^2}{m_{\rm DM}^2} \quad \alpha \simeq 0.01$$

 $m_{\rm DM} \simeq 300 \; {\rm GeV}$

階層性問題等に動機づけられた模型にしばしば自然に登場する。 これらの模型共々LHCにて検証されることが期待されていた。

Goal of the talk

これまで考えられてきたテラスケールの物理模型
 に現れる暗黒物質候補は大分制限されてきている。

まだまだ有力候補は残っているが。

● 一方,熱残存シナリオに動機づけられたWIMP 暗黒物質は未だに多くが未検証のまま。

今後重要なターゲットとなる。

●超対称標準模型における暗黒物質候補の現状

WIMP暗黒物質の現状

●その他, まとめ

超対称標準模型と暗黒物質

Supersymmetry (SUSY)

現時点までのLHCの結果

- 超対称粒子への制限
- 125 GeV ヒッグス質量

を考慮して

- 低スケールだが複雑
- 簡潔だが高スケール
- 『自然さ』の見直し

といった方針が探られている。

Constrained MSSM (CMSSM)

大統一スケールにおいてパラメーターに一致条件を課した, 伝統的なベンチマーク模型。

$$m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu)$$

低エネルギー領域のパラメーターはくりこみ群方程式を 通して得られる。

DM in CMSSM

ビーノLSPでcoannihilation (stop, stau)

J. Ellis, J. L. Evans, A. Mustafayev, N. Nagata, K. A. Olive, Eur. Phys. J. C76, 592 (2016).

Higgsino-like LSP in CMSSM

J. Ellis, J. L. Evans, F. Luo, N. Nagata, K. A. Olive, P. Sandick, Eur. Phys. J. C76, 8 (2016).

L. J. Hall, Y. Nomura, S. Shirai (2012) M. Ibe, S. Matsumoto, T. T. Yanagida (2012) A. Arvanitaki, N. Craig, S. Dimopoulos, G. Villadoro (2012) N. Arkani-Hamed, A. Gupta, D. E. Kaplan, N. Weiner, and T. Zorawski (2012)

超対称性を破る場がシングレットであると仮定。

例) アノマリー媒介機構

L. Randall and R. Sundrum (1998) G. F. Giudice, M. A. Luty, H. Murayama, and R. Rattazzi (1998)

High-scale SUSY

L. J. Hall, Y. Nomura, S. Shirai (2012) M. Ibe, S. Matsumoto, T. T. Yanagida (2012) A. Arvanitaki, N. Craig, S. Dimopoulos, G. Villadoro (2012) N. Arkani-Hamed, A. Gupta, D. E. Kaplan, N. Weiner, and T. Zorawski (2012)

超対称性を破る場がシングレットであると仮定。

L. J. Hall, Y. Nomura, S. Shirai (2012) M. Ibe, S. Matsumoto, T. T. Yanagida (2012) A. Arvanitaki, N. Craig, S. Dimopoulos, G. Villadoro (2012) N. Arkani-Hamed, A. Gupta, D. E. Kaplan, N. Weiner, and T. Zorawski (2012)

超対称性を破る場がシングレットであると仮定。

敷居補正の大きさ等によって異なる暗黒物質が実現。

DM candidates in High-scale SUSY

- ▶ ウィーノ [3 TeV]
- ▶ ヒッグシーノ [1 TeV]
- Coannihilation [bino-gluino, bino-wino, etc]
 - LSPと縮退している。

NLSPが長寿命になる傾向。

<u>Bino-gluino</u>

Bino-wino

- 質量差 O(100) GeV
- 崩壊長: O(1) cm

- 質量差 O(10) GeV
- 崩壊長: 1 cm 1m

Displaced vertex, dE/dx などを用いた長寿命粒子探索が有用。

N. Nagata, H. Otono, S. Shirai, Phys. Lett. B748, 24 (2015); JHEP 1510, 086 (2015).

Electroweak naturalness

低エネルギーでの超対称パラメーターの値だけに着目して 『自然さ』の指標を定義する: 『自然』であるための必要条件。

$$\frac{m_Z^2}{2} \simeq -\mu^2 - m_{H_u}^2 + \text{(Loop correction)}$$

くりこみ群の効果はとりあえず考えない。

右辺の各項の絶対値のうち最大のものを左辺で割って 得られる量, Δ_{EW} を指標とする。

H. Baer V. Barger, P. Huang, A. Mustafayev, and X. Tata (2012).

Δ_{EW} が小さいほど『自然』。

µは小さくなくてはならない。

軽いHiggsino LSP

全暗黒物質量を説明できるわけではない。

Test of natural SUSY

『自然さ』の指標 Δ_{EW} が小さいパラメーター領域は,様々な 方法で検証可能。

Gluino search

33 TeV LHC1 TeV ILC

Stop search

H. Baer, V. Barger, N. Nagata, M. Savoy (2016).

Higgsino search

K. J. Bae, H. Baer, N. Nagata, H. Serce (2015).

- naturalness -> upper bounds on sparticle masses
 - when to give up on SUSY?
- no WIMPs at Xe-n-ton/LZ
 - no higgsinos at ILC
 - no gluinos/top-squarks at LHC33

H. Baer, talk @ Olivefest, 2017.

Summary of DM in SUSY models

- CMSSM etc.
 - Higgsino-like DM [~1 TeV]
 - Bino-stop/stau coannihilation
 - High-scale SUSY
 - ➢ Wino [3 TeV]
 - Higgsino [1 TeV]
 - Bino-gluino/wino coannihilation
 - "Natural" SUSY
 - Light higgsino

- 暗黒物質直接探索
 - ??

- 以下で議論
- 長寿命粒子探索
- 暗黒物質直接探索 33 TeV LHC 1 TeV ILC

WINP暗黒物質の現状

Quantum numbers of DM

暗黒物質はカラー量子数を持たず電気的に中性。しかし、 この条件だけだとまだ多くの可能性が残されている。

- 粒子の種類は?
 - ・実/複素スカラー
 - ・マヨラナ/ディラック・フェルミオン
 - ・ベクトル場 etc.
- SU(2)_L × U(1)_Y 電荷?

 $(1, 0), (2, \pm 1/2), (3, 0), (3, \pm 1), (4, \pm 1/2), \dots$

Quantum numbers of DM

暗黒物質はカラー量子数を持たず電気的に中性。しかし、 この条件だけだとまだ多くの可能性が残されている。

粒子の種類は?

SU(2)_L × U(1)_Y 電荷?
 (1, 0), (2, ± 1/2), (3, 0), (3, ± 1), (4, ± 1/2), …

シングレット・スカラー暗黒物質

Singlet scalar DM

V. Silveira and A. Zee (1985); J. McDonald (1994); C. P. Burgess, M. Pospelov, and T. ter Veldhuis (2001).

標準模型に中性スカラー場を足しただけの超簡単な模型。 <u>ラグランジアン</u>

$$\mathcal{L}_{\rm int} = -\frac{1}{2}m^2 S^2 - \frac{1}{2}\lambda_{SH}S^2 |H|^2 - \frac{1}{4!}\lambda_S S^4$$

▶ 安定性

ラグランジアンはZ₂対称性を持つ: S → - S(奇); SM(偶).
 ▶ 残存量

$$\sigma_{\rm ann} v_{\rm rel} \simeq \frac{\lambda_{sH}^2}{16\pi m_{\rm DM}^2}$$

 $(m_{DM} > weak scale)$

 $m_{\text{DM}} \simeq 3.3 \lambda_{SH} \text{ TeV}$ のとき暗黒物質量の観測値を説明できる。

Ν

Ν

風間さんのトーク

1 TeVくらいまで制限されている。

Singlet scalar DM

Quantum numbers of DM

暗黒物質はカラー量子数を持たず電気的に中性。しかし、 この条件だけだとまだ多くの可能性が残されている。

- 粒子の種類は?
 - ・実/複素スカラー
 - ・マヨラナ/ディラック・フェルミオン
 - •ベクトル場 **etc.**
- SU(2)_L × U(1)_Y 電荷?
 (1, 0), (2, ± 1/2), (3, 0), (3, ± 1), (4, ± 1/2), …

シングレット・フェルミオン暗黒物質

Singlet fermion DM

安定なシングレット・フェルミオン暗黒物質は標準模型粒子と くりこみ可能な相互作用を持てない。

熱残存量シナリオ

▶ シングレット・スカラーを加える $\mathcal{L}_{int} = -f\psi\psi S + h.c. + \mathcal{L}(S, H)$

▶ ダブレット・フェルミオンを加える

 $\mathcal{L}_{\rm int} = -f\psi\psi_D H + \text{h.c.}$

▶ クォーク・レプトンのスカラー・パートナーを加える $\mathcal{L}_{int} = -f\psi Q \widetilde{Q} + h.c.$

▶ ゲージ相互作用を加える

模型ごとの解析が必要となる。

DM がディラック・フェルミオンの場合,マヨラナの場合と 全く異なる現象が生じうる。

<u>ディラック・フェルミオン暗黒物質が実現されるシナリオ例</u>

- ▶ 暗黒物質が隠れたゲージ対称性の電荷を持つ場合。
- Asymmetric Dark Matter
- Baryonic Dark Matter

e.g.) R. Huo, S. Matsumoto, Y. L. S. Tsai, T. T. Yanagida, JHEP. 1609, 162 (2016).

現象論的特徴

- ▶ カイラリティの抑制を受けること無くS波の消滅過程が 生じうる。 [大きな消滅断面積・重い暗黒物質質量]
- ▶ 暗黒物質の電気・磁気双極子モーメント,荷電半径,etc.

Singlet Dirac DM が新たな重いクォーク・スカラークォークを 通じて標準模型セクターと相互作用する模型を考察してみた。

▶ O(1) TeV の重いフェルミオン・スカラー @ LHC

J. Hisano, R. Nagai, N. Nagata, to appear.

▶ O(1) TeV の重いフェルミオン・スカラー @ LHC

J. Hisano, R. Nagai, N. Nagata, to appear.

Quantum numbers of DM

暗黒物質はカラー量子数を持たず電気的に中性。しかし、 この条件だけだとまだ多くの可能性が残されている。

- 粒子の種類は?
 - ・実/複素スカラー
 - ・マヨラナ/ディラック・フェルミオン
 - ・ベクトル場 etc.
- SU(2)_L × U(1)_Y 電荷?
 (1, 0), (2, ± 1/2), (3, 0), (3, ± 1), (4, ± 1/2), …

電弱相互作用を行う暗黒物質

Electroweak-Interacting DM

ハイパーチャージ Y を持つSU(2)∟ n重項の中性成分が暗黒物質 となっている場合。

相互作用

$$\mathcal{L}_{\text{int}} = \frac{g_2}{4} \sqrt{n^2 - (2Y - 1)^2} \,\overline{\chi^+} W^+ \chi^0 + \frac{g_2}{4} \sqrt{n^2 - (2Y + 1)^2} \,\overline{\chi^0} W^+ \chi^- + \text{h.c.} + i g_Z Y \overline{\chi^0} Z \eta^0 \,.$$

<u>[[]</u>

- **n** = 2, Y = 1/2 (ヒッグシーノ)
- **n** = 3, Y = 0 (ウィーノ)
- n = 5, Y = 0 (Minimal Dark Matter)

M. Cirelli, N. Fornengo, A. Strumia, Nucl. Phys. **B753**, 178 (2006).

これらの暗黒物質の物理は、ゲージ相互作用で(ほぼ)決まる。

スカラーの場合はヒッグスとの 結合を無視した場合。

Electroweak-Interacting DM

Quantum numbers			DM could	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	Finite naturalness	$\sigma_{ m SI}$ in
$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	in TeV	in MeV	bound in TeV	$10^{-46}{\rm cm}^2$
2	1/2	0	EL	0.54	350	$0.4 imes \sqrt{\Delta}$	$(0.4 \pm 0.6) 10^{-3}$
2	1/2	1/2	EH	1.1	341	$1.9 \times \sqrt{\Delta}$	$(0.25 \pm 056) 10^{-3}$
3	0	0	HH^*	$2.0 \rightarrow 2.5$	166	$0.22 \times \sqrt{\Delta}$	0.12 ± 0.03
3	0	1/2	LH	$2.4 \rightarrow 2.7$	166	$1.0 imes \sqrt{\Delta}$	0.12 ± 0.03
3	1	0	HH, LL	$1.6 \rightarrow ?$	540	$0.22 imes \sqrt{\Delta}$	$(1.3 \pm 1.1) 10^{-2}$
3	1	1/2	LH	$1.9 \rightarrow ?$	526	$1.0 imes \sqrt{\Delta}$	$(1.3 \pm 1.1) 10^{-2}$
4	1/2	0	HHH^*	$2.4 \rightarrow ?$	353	$0.14 \times \sqrt{\Delta}$	0.27 ± 0.08
4	1/2	1/2	(LHH^*)	$2.4 \rightarrow ?$	347	$0.6 imes \sqrt{\Delta}$	0.27 ± 0.08
4	3/2	0	HHH	$2.9 \rightarrow ?$	729	$0.14 imes \sqrt{\Delta}$	0.15 ± 0.07
4	3/2	1/2	(LHH)	$2.6 \rightarrow ?$	712	$0.6 imes \sqrt{\Delta}$	0.15 ± 0.07
5	0	0	(HHH^*H^*)	$5.0 \rightarrow 9.4$	166	$0.10 imes \sqrt{\Delta}$	1.0 ± 0.2
5	0	1/2	stable	$4.4 \rightarrow 10$	166	$0.4 imes \sqrt{\Delta}$	1.0 ± 0.2
7	0	0	stable	$8 \rightarrow 25$	166	$0.06 imes \sqrt{\Delta}$	4 ± 1

(→: ゾンマーフェルト効果)

<u>特徴</u>

M. Farina, D. Pappadopulo, A. Strumia, JHEP 1308 (2013) 022.

▶ 残存量計算により,比較的重い質量が予言される。

▶ 量子補正で生じるため,多重項間の質量差は小さい。

Advertisement SO(10) 大統一理論での(シンプルな)WIMP暗黒物質模型を リストアップした。 *UV completion!*

Weakly-interacting massive particles in non-supersymmetric SO(10) grand unified models

Natsumi Nagata, ^{*a,b*} Keith A. Olive^{*a*} and Jiaming Zheng^{*a*}

JHEP 1510, 193 (2015).

各WIMP暗黒物質模型を 低エネルギーで与える SO(10)大統一理論の一覧

SO(10)の対称性をうまく破ることで暗黒物質の 安定性を説明するシナリオ。

Electroweak-Interacting DM

<u>探索方法</u>

- LHC探索も重要。 🔶 陳さんのトーク
 - ▶ 生成断面積は大きくはない。
 - ▶ 小さい質量差のため、終状態は検出しにくい。
 - Disappearing track search (+α)
 - 量子補正を通じた間接探索。

S. Matsumoto, S. Shirai, M. Takeuchi, JHEP 1806, 049 (2018).

Electroweak interacting DM

Conclusion

Conclusion

- 超対称標準模型における暗黒物質候補は絞られて きている。
 - Wino [3 TeV]
 - Higgsino [< 1000 GeV]</p>
 - Coannihilation [bino-stop/gluino/wino/stau]

● WIMP暗黒物質は未だに多くが未検証のまま。 様々な場合を系統的に調べ,探っていくことが重要だろう。

Backup

Velocity dependence

<u>MDM</u>

$$\mathcal{M} \propto \frac{1}{q^2} \cdot \epsilon_{ijk} \, q^i p^j \, \xi^{\dagger}_{\chi} \sigma^k \xi_{\chi} \xi^{\dagger}_N \xi_N$$

<u>EDM</u>

$$\mathcal{M} \propto rac{1}{q^2} \cdot q^i \, \xi^\dagger_\chi \sigma^i \xi_\chi \xi^\dagger_N \xi_N$$

Contact

$$\mathcal{M} \propto \xi_\chi^\dagger \xi_\chi \xi_N^\dagger \xi_N$$

q: 運動量移行 **p**: 暗黒物質運動量 $|q^2|, |q|, |p| : O(v_{rel}^2)$

Sommerfeld effects

J. Hisano, S. Matsumoto, and M. M. Nojiri, Phys. Rev. Lett. 92, 031303 (2004).

Electroweak-interacting DMは、電弱相互作用により自己相互作用を 行う。

長距離自己相互作用により波動関数が平面波からずれる効果。

ゾンマーフェルト効果

相互作用の到達距離がボーア半径よりも大きくなると効き始める。

$$\frac{1}{m_W} \gtrsim \frac{1}{\alpha_2 m_{\rm DM}}$$

Sommerfeld effects

ゾンマーフェルト効果は消滅断面積を増大させる。

質量の大きい側に予言がずれる。

暗黒物質質量をきちんと予言するためにはこの効果を入れること が重要。

Mass splitting

多重項間の質量差は量子補正の赤外の寄与により生じる。

<u>電荷±1と0成分の間の質量差</u>

$$\Delta M = \frac{\alpha_2}{4\pi} M \left[(1 - 2Y) f\left(\frac{m_W}{M}\right) - (\cos^2 \theta_W - 2Y) f\left(\frac{m_Z}{M}\right) \right]$$
$$f(x) \simeq 2\pi x - 3x^2 + \frac{3\pi}{4}x^3 + \dots$$
$$\Delta M \simeq \alpha_2 m_W \sin^2 \frac{\theta_W}{2} + \alpha_2 Y m_W \left(\frac{1}{\cos \theta_W} - 1\right)$$

典型的にO(100) MeV.

Constraints and prospects

Current bound $|d_e| < 8.7 \times 10^{-29} e \cdot cm$
[ACME]LUXFuture prospects $|d_e| < 10^{-31} e \cdot cm$ Xenon 10 ton-year

- Y = 3/2の場合は既にかなりつらい。
- 将来実験にてY=1の場合は探れそう.
- スカラーの場合でもY = 3/2は大分厳しい。

N. Nagata and S. Shirai, Phys. Rev. D 91, 055035 (2015).

Higgsino in high-scale SUSY

Parameters

 $\mu = 500 \text{ GeV}$ $\widetilde{m} = M_1 = M_2 = M_3$ A-terms: 0
Higgs mass $\rightarrow \tan\beta$ Future prospects $|d_e| < 10^{-31} \ e \cdot \text{cm}$ $\sigma_{\text{SI}} < 10^{-48} \ \text{cm}^2$ $\Delta m < 300 \ \text{keV}$ $\Delta m_+|_{\text{tree}} > 0.2\Delta m_+|_{\text{rad}}$

N. Nagata and S. Shirai, JHEP **1501**, 029 (2015).

Gluino decay length

N. Nagata, H. Otono, S. Shirai, Phys. Lett. **B748**, 24 (2015) [arXiv: 1504.00504]

Mass spectrum and decay chains

が長寿命になる。

Decay length of neutral wino

N. Nagata, H. Otono, S. Shirai, JHEP **1510**, 086 (2015) [arXiv: **1506.08206**]

Prospects for the long-lived wino search

400 GeV (800 GeV) wino can be probed at 8 (14) TeV LHC.

N. Nagata, H. Otono, S. Shirai, JHEP 1510, 086 (2015) [arXiv: 1506.08206]