
Introduction to RooFit

W. Verkerke (NIKHEF)

1. Introduction and overview

2. Creation and basic use of models

3. Composing models

4. Working with (profile) likelihood

5. Simultaneous fits and combined models

Introduction
& Overview1

Introduction -- Focus: coding a probability density function

• Focus on one practical aspect of many data analysis in
HEP: How do you formulate your p.d.f. in ROOT
– For ‘simple’ problems (gauss, polynomial) this is easy

– But if you want to do unbinned ML fits, use non-trivial functions,
or work with multidimensional functions you quickly find that you
need some tools to help you

1

Introduction – Why RooFit was developed

• BaBar experiment at SLAC: Extract sin(2β) from time
dependent CP violation of B decay: e+e- à Y(4s) à BB
– Reconstruct both Bs, measure decay time difference

– Physics of interest is in decay time dependent oscillation

• Many issues arise
– Standard ROOT function framework clearly insufficient to handle such

complicated functions à must develop new framework

– Normalization of p.d.f. not always trivial to calculate à may need numeric
integration techniques

– Unbinned fit, >2 dimensions, many events à computation performance
important à must try optimize code for acceptable performance

– Simultaneous fit to control samples to account for detector performance

()[]
()[]);|BkgResol();(BkgDecay);BkgSel()1(

);|SigResol())2sin(,;(SigDecay);SigSel(

bkgbkgbkgsig

sigsigsigsig

rdttqtpmf

rdttqtpmf
rr

rr

⊗⋅−

+⊗⋅⋅ β

2

Introduction – Relation to ROOT

C++ command line
interface & macros

Data management &
histogramming

Graphics interface

I/O support

MINUIT

ToyMC data
Generation

Data/Model
Fitting

Data Modeling

Model
Visualization

Extension to ROOT – (Almost) no overlap with existing functionality

3

Project timeline

• 1999 : Project started
– First application: ‘sin2b’ measurement of BaBar

(model with 5 observables, 37 floating parameters, simultaneous fit to
multiple CP and control channels)

• 2000 : Complete overhaul of design based on
experience with sin2b fit

– Very useful exercise: new design is still current design

• 2003 : Public release of RooFit with ROOT

• 2004 : Over 50 BaBar physics publications using RooFit

• 2007 : Integration of RooFit in ROOT CVS source

• 2008 : Upgrade in functionality as part of RooStats project
– Improved analytical and

numeric integration handling,
improved toy MC generation,
addition of workspace

• 2009 : Now ~100K lines of code
– (For comparison RooStats

proper is ~5000 lines of code)

last modification before date

lin
e
s

o
f

co
d
e

4

RooFit core design philosophy

• Mathematical objects are represented as C++ objects

variable RooRealVar

function RooAbsReal

PDF RooAbsPdf

space point RooArgSet

list of space points RooAbsData

integral RooRealIntegral

RooFit classMathematical concept

)(xf

x

x
r

dxxf
x

x
∫
max

min

)(

)(xf

5

RooFit core design philosophy

• Represent relations between variables and functions
as client/server links between objects

f(x,y,z)

RooRealVar x RooRealVar y RooRealVar z

RooAbsReal f

RooRealVar x(“x”,”x”,5) ;
RooRealVar y(“y”,”y”,5) ;
RooRealVar z(“z”,”z”,5) ;
RooBogusFunction f(“f”,”f”,x,y,z) ;

Math

RooFit
diagram

RooFit
code

6

Object-oriented data modeling

• All objects are self documenting
• Name - Unique identifier of object

• Title – More elaborate description of object

RooRealVar mass(“mass”,”Invariant mass”,5.20,5.30) ;

RooRealVar width(“width”,”B0 mass width”,0.00027,”GeV”);

RooRealVar mb0(“mb0”,”B0 mass”,5.2794,”GeV”) ;

RooGaussian b0sig(“b0sig”,”B0 sig PDF”,mass,mb0,width);

Objects
representing
a ‘real’ value.

PDF object

Initial range

Initial value Optional unit

References to variables

7

Basic use2

The simplest possible example

• We make a Gaussian p.d.f. with three variables:
mass, mean and sigma

RooRealVar x(“x”,”Observable”,-10,10) ;

RooRealVar mean(“mean”,”B0 mass”,0.00027,”GeV”);

RooRealVar sigma(“sigma”,”B0 mass width”,5.2794,”GeV”) ;

RooGaussian model(“model”,”signal pdf”,x,mean,sigma)

Objects
representing
a ‘real’ value.

PDF object

Initial range

Initial value Optional unit

References to variables

Name of object Title of object

8

Basics – Creating and plotting a Gaussian p.d.f

// Create an empty plot frame
RooPlot* xframe = x.frame() ;

// Plot model on frame
model.plotOn(xframe) ;

// Draw frame on canvas
xframe->Draw() ;

Plot range taken from limits of x

Axis label from gauss title

Unit
normalization

Setup gaussian PDF and plot

A RooPlot is an empty frame
capable of holding anything
plotted versus it variable

9

Basics – Generating toy MC events

// Generate an unbinned toy MC set
RooDataSet* data = gauss.generate(x,10000) ;

// Generate an binned toy MC set
RooDataHist* data = gauss.generateBinned(x,10000) ;

// Plot PDF
RooPlot* xframe = x.frame() ;
data->plotOn(xframe) ;
xframe->Draw() ;

Generate 10000 events from Gaussian p.d.f and show distribution

Can generate both binned and
unbinned datasets

10

Basics – Importing data

• Unbinned data can also be imported from ROOT TTrees

– Imports TTree branch named “x”.

– Can be of type Double_t, Float_t, Int_t or UInt_t.
All data is converted to Double_t internally

– Specify a RooArgSet of multiple observables to import
multiple observables

• Binned data can be imported from ROOT THx histograms

– Imports values, binning definition and SumW2 errors (if defined)

– Specify a RooArgList of observables when importing a TH2/3.

// Import unbinned data
RooDataSet data(“data”,”data”,x,Import(*myTree)) ;

// Import unbinned data
RooDataHist data(“data”,”data”,x,Import(*myTH1)) ;

11

Basics – ML fit of p.d.f to unbinned data

// ML fit of gauss to data
gauss.fitTo(*data) ;
(MINUIT printout omitted)

// Parameters if gauss now
// reflect fitted values
mean.Print()
RooRealVar::mean = 0.0172335 +/- 0.0299542
sigma.Print()
RooRealVar::sigma = 2.98094 +/- 0.0217306

// Plot fitted PDF and toy data overlaid
RooPlot* xframe = x.frame() ;
data->plotOn(xframe) ;
gauss.plotOn(xframe) ;

PDF
automatically
normalized
to dataset

12

Basics – ML fit of p.d.f to unbinned data

• Can also choose to save full detail of fit

RooFitResult* r = gauss.fitTo(*data,Save()) ;

r->Print() ;
RooFitResult: minimized FCN value: 25055.6,

estimated distance to minimum: 7.27598e-08
coviarance matrix quality:
Full, accurate covariance matrix

Floating Parameter FinalValue +/- Error
-------------------- --------------------------

mean 1.7233e-02 +/- 3.00e-02
sigma 2.9809e+00 +/- 2.17e-02

r->correlationMatrix().Print() ;

2x2 matrix is as follows

| 0 | 1 |

0 | 1 0.0005869
1 | 0.0005869 1

13

Basics – Integrals over p.d.f.s

• It is easy to create an object representing integral over
a normalized p.d.f in a sub-range

• Similarly, one can also request
the cumulative distribution function

w::x.setRange(“sig”,-3,7) ;
RooAbsReal* ig = g.createIntegral(x,NormSet(x),Range(“sig”)) ;
cout << ig.getVal() ;
0.832519
mean=-1 ;
cout << ig.getVal() ;
0.743677

xdxFxC
x

x
′′= ∫

min

)()(

RooAbsReal* cdf = gauss.createCdf(x) ;

14

RooFit core design philosophy - Workspace

• The workspace serves a container class for all
objects created

f(x,y,z)

RooRealVar x RooRealVar y RooRealVar z

RooAbsReal f

RooRealVar x(“x”,”x”,5) ;
RooRealVar y(“y”,”y”,5) ;
RooRealVar z(“z”,”z”,5) ;
RooBogusFunction f(“f”,”f”,x,y,z) ;
RooWorkspace w(“w”) ;
w.import(f) ;

Math

RooFit
diagram

RooFit
code

15

RooWorkspace

Using the workspace

• Workspace

– A generic container class for all RooFit objects of your project

– Helps to organize analysis projects

• Creating a workspace

• Putting variables and function into a workspace
– When importing a function or pdf, all its components (variables)

are automatically imported too

RooWorkspace w(“w”) ;

RooRealVar x(“x”,”x”,-10,10) ;
RooRealVar mean(“mean”,”mean”,5) ;
RooRealVar sigma(“sigma”,”sigma”,3) ;
RooGaussian f(“f”,”f”,x,mean,sigma) ;

// imports f,x,mean and sigma
w.import(myFunction) ;

16

Using the workspace

• Looking into a workspace

• Getting variables and functions out of a workspace

w.Print() ;

variables

(mean,sigma,x)

p.d.f.s

RooGaussian::f[x=x mean=mean sigma=sigma] = 0.249352

// Variety of accessors available

RooPlot* frame = w.var(“x”)->frame() ;

w.pdf(“f”)->plotOn(frame) ;

17

Using the workspace

• Alternative access to contents through namespace

– Uses CINT extension of C++, works in interpreted code only

• Writing workspace and contents to file

// Variety of accessors available

w.exportToCint() ;

RooPlot* frame = w::x.frame() ;

w::f.plotOn(frame) ;

w.writeToFile(“wspace.root”) ;

18

Using the workspace

• Organizing your code –
Separate construction and use of models

void driver() {
RooWorkspace w(“w”0 ;

makeModel(w) ;

useModel(w) ;

}

void makeModel(RooWorkspace& w) {

// Construct model here

}

void useModel(RooWorkspace& w) {

// Make fit, plots etc here

}

19

RooFit core design philosophy - Factory

• The factory allows to fill a workspace with pdfs and
variables using a simplified scripting language

f(x,y,z)

RooRealVar x RooRealVar y RooRealVar z

RooAbsReal f

RooWorkspace w(“w”) ;
w.factory(“BogusFunction::f(x[5],y[5],z[5])”) ;

Math

RooFit
diagram

RooFit
code

20

RooWorkspace

Factory and Workspace

• One C++ object per math symbol provides
ultimate level of control over each objects functionality,
but results in lengthy user code for even simple macros

• Solution: add factory that auto-generates objects from
a math-like language. Accessed through factory()
method of workspace

• Example: reduce construction of Gaussian pdf and its
parameters from 4 to 1 line of code

w.factory(“Gaussian::f(x[-10,10],mean[5],sigma[3])”) ;

RooRealVar x(“x”,”x”,-10,10) ;
RooRealVar mean(“mean”,”mean”,5) ;
RooRealVar sigma(“sigma”,”sigma”,3) ;
RooGaussian f(“f”,”f”,x,mean,sigma) ;

21

Factory language – Goal and scope

• Aim of factory language is to be very simple.

• The goal is to construct pdfs, functions and variables

– This limits the scope of the factory language (and allows to keep it
simple)

– Objects can be customized after creation

• The language syntax has only three elements

1. Simplified expression for creation of variables

2. Expression for creation of functions and pdf is trivial
1-to-1 mapping of C++ constructor syntax of corresponding
object

3. Multiple objects (e.g. a pdf and its variables) can be nested in a
single expression

• Operator classes (sum,product) provide alternate
syntax in factory that is closer to math notation

22

Factory syntax

• Rule #1 – Create a variable

• Rule #2 – Create a function or pdf object

– Leading ‘Roo’ in class name can be omitted

– Arguments are names of objects that already exist in the workspace

– Named objects must be of correct type, if not factory issues error

– Set and List arguments can be constructed with brackets {}

x[-10,10] // Create variable with given range
x[5,-10,10] // Create variable with initial value and range
x[5] // Create initially constant variable

Gaussian::g(x,mean,sigma)
àààà RooGaussian(“g”,”g”,x,mean,sigma)

Polynomial::p(x,{a0,a1})
àààà RooPolynomial(“p”,”p”,x”,RooArgList(a0,a1));

ClassName::Objectname(arg1,[arg2],...)

23

Factory syntax

• Rule #3 – Each creation expression returns the name of
the object created

– Allows to create input arguments to functions ‘in place’ rather
than in advance

• Miscellaneous points

– You can always use numeric literals where values or functions are
expected

– It is not required to give component objects a name, e.g.

Gaussian::g(x[-10,10],mean[-10,10],sigma[3])
àààà x[-10,10]

mean[-10,10]
sigma[3]
Gaussian::g(x,mean,sigma)

Gaussian::g(x[-10,10],0,3)

SUM::model(0.5*Gaussian(x[-10,10],0,3),Uniform(x)) ;

24

Model building – (Re)using standard components

• RooFit provides a collection of compiled standard PDF classes

RooArgusBG

RooPolynomial

RooBMixDecay

RooHistPdf

RooGaussian

Basic
Gaussian, Exponential, Polynomial,…
Chebychev polynomial

Physics inspired
ARGUS,Crystal Ball,
Breit-Wigner, Voigtian,
B/D-Decay,….

Non-parametric
Histogram, KEYS

Easy to extend the library: each p.d.f. is a separate C++ class

25

Model building – (Re)using standard components

• List of most frequently used pdfs and their factory spec

Gaussian Gaussian::g(x,mean,sigma)

Breit-Wigner BreitWigner::bw(x,mean,gamma)

Landau Landau::l(x,mean,sigma)

Exponential Exponental::e(x,alpha)

Polynomial Polynomial::p(x,{a0,a1,a2})

Chebychev Chebychev::p(x,{a0,a1,a2})

Kernel Estimation KeysPdf::k(x,dataSet)

Poisson Poisson::p(x,mu)

Voigtian Voigtian::v(x,mean,gamma,sigma)
(=BW⊗G)

26

Model building – Making your own

• Interpreted expressions

• Customized class, compiled and linked on the fly

• Custom class written by you
– Offer option of providing analytical integrals, custom handling of

toy MC generation (details in RooFit Manual)

• Compiled classes are faster in use, but require O(1-2)
seconds startup overhead
– Best choice depends on use context

w.factory(“EXPR::mypdf(‘sqrt(a*x)+b’,x,a,b)”) ;

w.factory(“CEXPR::mypdf(‘sqrt(a*x)+b’,x,a,b)”) ;

27

Model building – Adjusting parameterization

• RooFit pdf classes do not require their parameter
arguments to be variables, one can plug in functions as
well

• Simplest tool perform reparameterization is interpreted
formula expression

– Note lower case: expr builds function, EXPR builds pdf

• Example: Reparameterize pdf that expects mistag rate
in terms of dilution

w.factory(“expr::w(‘(1-D)/2’,D[0,1])”) ;

w.factory(“BMixDecay::bmix(t,mixState,tagFlav,
tau,expr(‘(1-D)/2’,D[0,1]),dw,....”) ;

28

Composite
models3

RooBMixDecay

RooPolynomial

RooHistPdf

RooArgusBG

Model building – (Re)using standard components

• Most realistic models are constructed as the sum of one or more
p.d.f.s (e.g. signal and background)

• Facilitated through operator p.d.f RooAddPdf

RooAddPdf
+

RooGaussian

29

Adding p.d.f.s – Mathematical side

• From math point of view adding p.d.f is simple

– Two components F, G

– Generically for N components P0-PN

• For N p.d.f.s, there are N-1 fraction coefficients that
should sum to less 1

– The remainder is by construction 1 minus the sum of all other
coefficients

)()1()()(xGfxfFxS −+=

)(1)(...)()()(
1,0

111100 xPcxPcxPcxPcxS n
ni

inn 







−++++= ∑

−=
−−

30

Adding p.d.f.s – Factory syntax

• Additions created through a SUM expression

– Note that last PDF does not have an associated fraction

• Complete example

w.factory(“Gaussian::gauss1(x[0,10],mean1[2],sigma[1]”) ;
w.factory(“Gaussian::gauss2(x,mean2[3],sigma)”) ;
w.factory(“ArgusBG::argus(x,k[-1],9.0)”) ;

w.factory(“SUM::sum(g1frac[0.5]*gauss1, g2frac[0.1]*gauss2, argus)”)

SUM::name(frac1*PDF1,frac2*PDF2,...,PDFN)

31

Component plotting - Introduction

• Plotting, toy event generation
and fitting works identically
for composite p.d.f.s

– Several optimizations applied
behind the scenes that are
specific to composite models
(e.g. delegate event generation
to components)

• Extra plotting functionality
specific to composite pdfs
– Component plotting

// Plot only argus components
w::sum.plotOn(frame,Components(“argus”),LineStyle(kDashed)) ;

// Wildcards allowed
w::sum.plotOn(frame,Components(“gauss*”),LineStyle(kDashed)) ;

32

Extended ML fits

• In an extended ML fit, an extra term is added to the
likelihood

Poisson(Nobs,Nexp)

• This is most useful in combination with a composite pdf

NNxBfxSfxF =−+⋅= exp;)()1()()(

BS
BS

B

BS

S NNNxB
NN

N
xS

NN
N

xF +=
+

+⋅
+

= exp;)()()(

BS NNNf ,, ⇒

SUM::name(Nsig*S,Nbkg*B)

Write like this,
extended term automatically included in –log(L)

33

shape normalization

Operations on specific to composite pdfs

• Tree printing mode of workspace reveals component
structure – w.Print(“t”)

– Can also make input files for GraphViz visualization
(w::sum.graphVizTree(“myfile.dot”))

– Graph output on ROOT Canvas in near future
(pending ROOT integration
of GraphViz package)

RooAddPdf::sum[g1frac * g1 + g2frac * g2 + [%] * argus] = 0.0687785
RooGaussian::g1[x=x mean=mean1 sigma=sigma] = 0.135335
RooGaussian::g2[x=x mean=mean2 sigma=sigma] = 0.011109
RooArgusBG::argus[m=x m0=k c=9 p=0.5] = 0

34

Convolution

• Model representing a convolution of a theory model and a
resolution model often useful

• But numeric calculation of convolution integral can be
challenging. No one-size-fits-all solution, but 3 options
available
– Analytical convolution (BW⊗Gauss, various B physics decays)

– Brute-force numeric calculation (slow)

– FFT numeric convolution (fast, but some side effects)

⊗⊗⊗⊗ =

∫
+∞

∞−

′′−=⊗ xdxxgxfxgxf)()()()(

35

Convolution

• Example

• FFT usually best

– Fast: unbinned ML fit to 10K
events take ~5 seconds

– NB: Requires installation of FFTW
package (free, but not default)

– Beware of cyclical effects
(some tools available to mitigate)

w.factory(“Landau::L(x[-10,30],5,1)”) :
w.factory(“Gaussian::G(x,0,2)”) ;

w::x.setBins(“cache”,10000) ; // FFT sampling density
w.factory(“FCONV::LGf(x,L,G)”) ; // FFT convolution

w.factory(“NCONV::LGb(x,L,G)”) ; // Numeric convolution

36

RooBMixDecay

RooPolynomial

RooHistPdf

RooArgusBG

RooGaussian

Model building – Products of uncorrelated p.d.f.s

RooProdPdf*

)()(),(yGxFyxH ⋅=

37

Uncorrelated products – Mathematics and constructors

• Mathematical construction of products of uncorrelated
p.d.f.s is straightforward

– No explicit normalization required à If input p.d.f.s are unit
normalized, product is also unit normalized

– (Partial) integration and toy MC generation automatically uses
factorizing properties of product, e.g. is deduced
from structure.

• Corresponding factory operator is PROD

)()(),(yGxFyxH ⋅= ∏=
i

iii xFxH)()(}{}{}{

2D nD

w.factory(“Gaussian::gx(x[-5,5],mx[2],sx[1])”) ;
w.factory(“Gaussian::gy(y[-5,5],my[-2],sy[3])”) ;

w.factory(“PROD::gxy(gx,gy)”) ;

∫ ≡)(),(yGdxyxH

38

Plotting multi-dimensional models

• N-D models usually projected on 1-D for visualization
– Happens automatically.

RooPlots tracks observables of plotted data,
subsequent models automatically integrated

– Projection integrals analytically reduced
whenever possible
(e.g. in case of factorizing pdf)

• To make 2,3D histogram of pdf

RooDataSet* dxy =
w::gxy.generate(RooArgSet(w::x,w::y,10000));

RooPlot* frame = w::x.frame() ;
dxy->plotOn(frame) ;
w::gxy.plotOn(frame) ; ∫= dyyxgxyxPgxy),()(

TH2* hh = w::gxy.createHistogram(“x,y”,50,50);

39

Can also project slices of a multi-dimensional pdf

RooPlot* xframe = x.frame() ;
data->plotOn(xframe) ;
model.plotOn(xframe) ;

y.setRange(“sig”,-1,1) ;
RooPlot* xframe2 = x.frame() ;
data->plotOn(xframe2,CutRange("sig")) ;
model.plotOn(xframe2,ProjectionRange("sig")) ;

model(x,y) = gauss(x)*gauss(y) + poly(x)*poly(y)

à Works also with >2D projections (just specify projection range on all projected observables)

à Works also with multidimensional p.d.fs that have correlations

40

Introducing correlations through composition

• RooFit pdf building blocks do not require variables as
input, just real-valued functions

– Can substitute any variable with a function expression in
parameters and/or observables

– Example: Gaussian with shifting mean

– No assumption made in function on a,b,x,y being observables or
parameters, any combination will work

);,()),(,();(qyxfqypxfpxf =⇒

w.factory(“expr::mean(‘a*y+b’,y[-10,10],a[0.7],b[0.3])”) ;
w.factory(“Gaussian::g(x[-10,10],mean,sigma[3])”) ;

41

What does the example p.d.f look like?

• Use example model with x,y as observables

• Note flat distribution in y. Unlikely to describe data, solutions:
1. Use as conditional p.d.f g(x|y,a,b)

2. Use in conditional form multiplied by another pdf in y: g(x|y)*h(y)

Projection on Y

Projection on X

42

Example with product of conditional and plain p.d.f.

// I - Use g as conditional pdf g(x|y)
w::g.fitTo(data,ConditionalObservables(w::y)) ;

// II - Construct product with another pdf in y
w.factory(“Gaussian::h(y,0,2)”) ;
w.factory(“PROD::gxy(g|y,h)”) ;

gx(x|y) gy(y)* model(x,y)=

∫ dyygyxgx)()|(

43

Special pdfs – Kernel estimation model

• Kernel estimation model

– Construct smooth pdf from unbinned data,
using kernel estimation technique

• Example

• Also available for n-D data

Sample of events
Gaussian pdf
for each event

Summed pdf
for all events

Adaptive Kernel:
width of Gaussian depends
on local event density

w.import(myData,Rename(“myData”)) ;
w.factory(“KeysPdf::k(x,myData)”) ;

44

Special pdfs – Morphing interpolation

• Special operator pdfs can interpolate existing pdf shapes
– Ex: interpolation between Gaussian and Polynomial

• Two morphing algorithms available
– IntegralMorph (Alex Read algorithm).

CPU intensive, but good with discontinuities

– MomentMorph (Max Baak).
Fast, can handle multiple observables (and soon multiple interpolation
parameters), but doesn’t work well for all pdfs

w.factory(“Gaussian::g(x[-20,20],-10,2)”) ;
w.factory(“Polynomial::p(x,{-0.03,-0.001})”) ;
w.factory(“IntegralMorph::gp(g,p,x,alpha[0,1])”) ;

Fit to data

α = 0.812 ± 0.008

45

Special pdfs – Unbinned ML fit for efficiency function

• Binomial pdf

– Constructs pdf that can estimate efficiency function e(x) in from
dataset D(x,c) where ‘c’ distinguishes accepted and rejected events

w.factory(“expr::e(‘(1-a)+a*cos((x-c)/b)’,x,a,b,c);
w.factory(“Efficiency::model(e,cut[acc,rej],"acc")”) ;

w::model.fitTo(data,ConditionalObservables(w::x)) ;

RooPlot* frame = w::x.frame() ;
data->plotOn(frame,

Efficiency(cut)) ;
e.plotOn(frame) ;

46

Likelihood &
Profile Likelihood4

Constructing the likelihood

• So far focus on construction of pdfs, and basic use for
fitting and toy event generation

• Can also explicitly construct the likelihood function of
and pdf/data combination

– Can use (plot, integrate) likelihood like any RooFit function object

RooAbsReal* nll = w::model.createNLL(data) ;

RooPlot* frame = w::param.frame() ;
nll->plotOn(frame,ShiftToZero()) ;

47

Constructing the likelihood

• Example – Manual MINUIT invocation

– After each MINUIT command, result of operation are immediately
propagated to RooFit variable objects (values and errors)

– NB: Also other minimizers (Minuit2, GSL etc) supported since 5.24

• Can also create χ2 functions objects

// Create likelihood (calculation parallelized on 8 cores)
RooAbsReal* nll = w::model.createNLL(data,NumCPU(8)) ;

RooMinuit m(*nll) ; // Create MINUIT session
m.migrad() ; // Call MIGRAD
m.hesse() ; // Call HESSE
m.minos(w::param) ; // Call MINOS for ‘param’

RooFitResult* r = m.save() ; // Save status (cov matrix etc)

RooAbsReal* chi2 = w::model.createChi2(binnedData) ;
RooAbsReal* chi2 = w::model.createXYChi2(xyData) ;

48

Using the fit result output

• The fit result class contains the full MINUIT output

• Easy visualization of correlation matrix

• Construct multi-variate Gaussian pdf
representing pdf on parameters

– Returned pdf represents HESSE parabolic
approximation of fit

• Extract correlation, covariance matrix

– Can also retrieve partial matrix (Schur compl.)

fitresult->correlationHist->Draw(“colz”) ;

RooAbsPdf* paramPdf = fr->createHessePdf(RooArgSet(frac,mean,sigma));

TMatrixDSym cov = fr->covarianceMatrix() ;
TMatrixDSym cov = fr->covarianceMatrix(a,b) ;

49

Using the fit result output – Error propagation

• Can (as visual aid) propagate errors in covariance
matrix of a fit result to a pdf projection

– Linear propagation on
pdf projection

• Propagated error can be
calculated on arbitrary function
– E.g fraction of events in signal range

w::model.plotOn(frame,VisualizeError(*fitresult)) ;
w::model.plotOn(frame,VisualizeError(*fitresult,fsig)) ;

EVE
rr

1−=∆

RooAbsReal* fracSigRange =
w::model.createIntegral(x,x,”sig”) ;

Double_t err =
fracSigRange.getPropagatedError(*fr);

50

Adding parameter pdfs to the likelihood

• Systematic/external uncertainties can be modeled
with regular RooFit pdf objects.

• To incorporate in likelihood, simply multiply with orig pdf

– Any pdf can be supplied, e.g. a RooMultiVarGaussian from a
RooFitResult (or one you construct yourself)

w.factory(“Gaussian::g(x[-10,10],mean[-10,10],sigma[3])”) ;

w.factory(“PROD::gprime(f,Gaussian(mean,1.15,0.30))”) ;

))30.0,15.1,(log(),;(log(),(log µσµσµ GaussxfL
data

i −−−=− ∑

w.import(*fr->createHessePdf(w::mean,w::sigma),”parampdf”) ;
w.factory(“PROD::gprime(f,parampdf)”) ;

51

Working with profile likelihood

• A profile likelihood ratio

can be represent by a regular RooFit function
(albeit an expensive one to evaluate)

)ˆ,ˆ(
)ˆ̂,(

)(
qpL
qpL

p =λ

RooAbsReal* ll = model.createNLL(data,NumCPU(8)) ;
RooAbsReal* pll = ll->createProfile(params) ;

RooPlot* frame = w::frac.frame() ;
nll->plotOn(frame,ShiftToZero()) ;
pll->plotOn(frame,LineColor(kRed)) ;

52

Best L for given p

Best L

On the equivalence of profile likelihood and MINOS

• Demonstration of equivalence
of (RooFit) profile likelihood
and MINOS errors

– Macro to make above plots is
34 lines of code (+23 to beautify
graphics appearance)

53

Simultaneous fits
and combinations5

Constructing joint pdfs

• Operator class SIMUL to construct joint models
at the pdf level

• Can also construct joint datasets

// Pdfs for channels ‘A’ and ‘B’
w.factory(“Gaussian::pdfA(x[-10,10],mean[-10,10],sigma[3])”) ;
w.factory(“Uniform::pdfB(x)”) ;

// Create discrete observable to label channels
w.factory(“index[A,B]”) ;

// Create joint pdf
w.factory(“SIMUL::joint(index,A=pdfA,B=pdfB)”) ;

RooDataSet *dataA, *dataB ;
RooDataSet dataAB(“dataAB”,”dataAB”,Index(w::index),

Import(“A”,*dataA),Import(“B”,*dataB)) ;

54

Constructing joint likelihood

• Can then construct the joint likelihood as usual

• Also possible to make likelihood first and then join

– But then there is no definition of joint pdf
and cannot execute frequentist techniques on joint models...

RooAbsReal* nllJoint = w::joint.createNLL(dataAB) ;

RooAbsReal* nllA = w::A.createNLL(*dataA) ; w.import(nllA) ;
RooAbsReal* nllB = w::B.createNLL(*dataB) ; w.import(nllB) ;
w.factory(sum::nllJoint(nllA,nllB)) ;

55

Using joint models

• When constructing joint models and likelihoods:

parameters with the same name = same parameter

• If intentional, you are done at this point.

– Takes all parameter correlations
fully into account

– To add additional correlations,
simply multiply joint pdf with
appropriate RooMultiVarGaussian
pdf in parameters of choice

RooAbsReal* pllJoint = nllJoint->createProfile(paramOfInterest) ;

w.factory(“MultiVarGaussian::corr
({a,b},{0,0},COV)”);

w.factory(“PROD::jointc(joint,corr)”) ;

56

Tools to aid logistics of building a joint model

• Multiple experiments / analysis groups are unlikely to
be organized to an extent where parameter naming
schemes match exactly

– The workspace has tools to manage this

– These tools are the basis for (future) high level combination tools
that will be part of the RooStats project

• Import model from another workspace
– Example:: rename all variables of import model

to unique names by appending a suffix _aHZZ,
and rename mHiggs to MH

– Can also import straight from file using
fileName:wspaceName:objName syntax

w.import(atlasHiggsZZ,
RenameAllVariablesExcept(“mHiggs”,”aHZZ”),
RenameVariable(“mHiggs”,”MH”) ;

w.importFromFile(“ahzz.root:w:atlasHiggsZZ”,…) ;

57

Summary

• Brief overview of RooFit functionality, tailored to serve
as introductory to RooStats

– Many features were not mentioned here

– No discussion of how this work internally (optimization, analytical
deduction abilities)

– About 90% of the details were omitted

• Documentation
– Starting point: http://root.cern.ch/drupal/content /roofit

– Users manual (134 pages ~ 1 year old)

– Quick Start Guide (20 pages, recent)

– Link to 84 tutorial macros (also in $ROOTSYS/tutorials/roofit)

• Support
– Post your question on ‘Stat & Math Forum’ of ROOT

(root.cern.ch à Forum à Stat & Math tools)

– I aim for <24h response (but I don’t manage every day!)

58

Hands-on
exercises6

Getting started – ROOT setup

• Start a ROOT 5.25/04 session
– Local installation on your laptop (PREFERRED due to limited wireless capacity)

– On lxplus (SLC4) or lx64slc5 (SLC5) choose appropriate line below

• Now move to your personal working area

• Load the roofit & roostats libraries

• If you see a message that RooFit v3.11 is loaded
you are (almost) ready to go.

• Import the namespace RooFit in CINT

• Recommendation: put the last two lines in your ROOT
login script to automate the loading

lxplus> source ~verkerke/public/setup_slc4.csh
lxplus> source ~verkerke/public/setup_slc4.sh
lxplus> source ~verkerke/public/setup_slc5.csh
lxplus> source ~verkerke/public/setup_slc5.sh

root> gSystem->Load(“libRooStats”) ;

root> using namespace RooFit ;

Getting started – Online reference material

• RooFit class documentation (from code)

– http://root.cern.ch/root/html/ROOFIT_ROOFITCORE_Index.html

– http://root.cern.ch/root/html/ROOFIT_ROOFIT_Index.html

• RooFit home page at ROOT web site
– http://root.cern.ch/drupal/content/roofit

– Has links to manual and tutorial macros

Exercise 1 – A simple fit

• Copy ~verkerke/public/ex1.C and run it.

– This macro uses the ‘w::’ shortcut syntax only available in CINT

– Look at ex1var.C to see the solution written in pure C++

• This macro does the following for you:
– Creates a workspace “w”, and uses the factory to fill it with a

Gaussian g(x,mean,sigma)

– Generates an unbinned dataset in x with 10K events from the pdf

– Performs an unbinned ML fit of the pdf to the data

– Makes a plot of the data with the pdf overlaid

– Calls the Print() function on the parameter to see that the
parameter estimate and its error have been propagated to the
variable

• Modify the macro to generate a binned dataset instead
of an unbinned dataset and run again

– Use generateBinned() instead of generate()

Exercise 2 – Making a composite model

• Rename ex1.C to ex2.C

• Using the factory, add a 2rd order Chebychev pdf to the
workspace with coefficients a1=0 and a2=0.1 (each with
range [-1,1])

– See pages 23, 26 of presentation for help on creating variables and
Chebychev pdfs respectively

• Using the SUM operator create a new extended pdf ‘model’
that adds the Gaussian and the Chebychev.

– To make an extended pdf you must give each component a
coefficient (e.g. Nsig and Nbkg with a range [0,10000])

– See page 33 of presentation for the syntax of SUM for extended pdfs

– You can create Nsig and Nbkg in the same command as the SUM
constructions following the logic explained on page 24 of the
presentation

Exercise 2 – Making a composite model

• Call the Print(“t”) method on the workspace to see the
new contents in ‘tree-style’ organization

• Generate a dataset with 1000 events from model, fit it,
and plot the data, model, as well as the background
component of model

– Use the Components() method to specify the background
component.

– If you like you can add LineStyle(kDashed) option

– If you get ROOT error messages that ‘Components()’ is not
defined, you have forgotten your ‘using namespace RooFit’ in the
macro

Exercise 2 – Making a composite model (cont’d)

• This part is optional – do it only when you feel you are
progressing quickly, otherwise do it when you have completed the
other exercises

• Redo the fit, adding a Save() argument to fitTo() and save the
returned RooFitResult* pointer
– See page 17 of presentation for help

• Visualize the correlation matrix from the fit result
– gStyle->SetPalette(1) ;

– myFitResult->correlationHist()->Draw(“colz”) ;

• Plot the fitted pdf with the error band defined by the
fit result
– Add a VisualizeError(*myFR) option in RooAbsPdf::plotOn().

– Do the same for the background component plot

– NB: You can change the color of the band using e.g. FillColor(kYellow), and
have the band placed at the bottom of the draw stack with the additional
MoveToBack() command

Demo 1 – FFT convolution of arbitrary pdfs

• Copy ~verkerke/public/fftdemo.C and run it

• This macro demonstrates how the FCONV fourier
convolution operator is used to convolute a Landau pdf
with a Gaussian resolution model

• A binned likelihood fit of the numerically convoluted pdf
with three floating parameters takes ~1 second

Exercise 3 – Persisting your model

• Copy ex2.C to ex3a.C

• At the end of the macro, import the toy data you
generated into the workspace as follows

– w.import(data,Rename(“data”)) ;

• Write your workspace to file

– using the method w.writeToFile(“model.root”).

• Now quit your ROOT session

• Copy ~verkerke/public/ex3b.C.
– This macro will read in your model.root file and plot the pdf and

dataset contained in it

• Look at the macro and run it

Demo 2 – simultaneous fitting

• Copy ~verkerke/public/simfitdemo.C and run it

• This macro demonstrates techniques to make simultaneous
fits to a ‘signal’ and ‘control’ samples in multiple ways

1. Plain fit of model sigPdf+bkgPdf to ‘signal sample’

2. Plain fit of model sigPdf+bkgPdfCtrl to ‘control sample’

3. A simultaneous fit of 1) and 2).
– The determination of the parameters that occur in both model 1) and

2) are now determined from the joint likelihood fit

– The uncertainty of the signal pdf shape is now noticeably smaller
then when fitting 1) by itself

4. Express parabolic likelihood approximation of control
sample fit (2) as pdf on sigPdf parameters , multiply
likelihood of signal sample fit (1) with this pdf
– Result is equivalent to 3) (in the limit that the actual likelihood of 2)

is parabolic), but the ‘joint’ likelihood calculation is much faster than
in 3) as the control sample likelihood is now parameterized

Exercise 4 – Working with the likelihood

• Copy ex3b.C to ex4.C

• Remove the plotting code and add a line to create a
function object that represents the –log(likelihood)

– Use method RooAbsPdf::createNLL(RooAbsData&), the returned
object is of type RooAbsReal*

– See page 47 in the presentation for help

• Minimize the likelihood function ‘by hand’ by passing it
to a RooMinuit object and calling its methods migrad()
and hesse()
– See page page 48 in the presentation for help (also for below)

– Now call the minos() function only for parameter Nsig.

– Call w::Nsig.Print() afterwards to see that the asymmetric error
has been propagated

– Fix the width of the Gaussian (use w::sigma.setConstant(kTRUE)),
run MINOS again and observe the effect.

Exercise 4 – Working with the likelihood

• Make a plot of –log(L) vs Nsig

– First create a plot frame in the parameter using
RooPlot* frame = w::Nsig.frame() ;

– Now plot the likelihood function on the frame, using plotOn() as
usual

– If you like you can add a ShiftToZero() argument to the plotOn()
call and see what that does

– You can adjust the virtual range of the plot frame with
SetMinimum() and SetMaximum().

Demo 3 – n-Dim models and likelihood ratio plot

• Copy ~verkerke/public/llrdemo.C and run it

• This macro builds a 3-dimensional model

– Flat background in (x,y,z)

– Gaussian signal in (x,y,z) with correlations

• It plots three 2D projections (x,y), (x,z) and (y,z)

• Then it makes three varieties of 1D plots of model and data
– Plain projection on x (shows lots of background)

– Projection on x in a ‘signal box’ in (y,z)

– Projection on x with a cut on the LR(y,z)>68%,
where LR(y,z) is defined as

(i.e. the signal probability according to the model using the (y,z)
observables only)

∫
∫

+

⋅
=

dxzyxBzyxS

dxzyxSf
zyLR

sig

),,(),,(

),,(
),(

Exercise 5 – Profile likelihood

• Copy ~verkerke/public/ex4.C (standard solution to ex4)
to ex5.C

• Adjust the horizontal plot range of the likelihood plot so
that it just covers the interval ∆LL=+25 units
– Make a new plot frame that zooms in on that range and plot the

likelihood again (you can specify myparam.frame(pmin,pmax)
when you construct the plot frame to control the plot range)

• Create the profile likelihood function in Nsig
– Call method createProfile(w::Nsig) on the likelihood function

object and save the returned pointer to the profile likelihood
function (again of type RooAbsReal*)

– Plot the profile likelihood ratio on the Nsig frame too (make it red
by adding a LineColor(kRed) to the plotOn() command)

• Find the profile likelihood ratio interval of Nsig : find the
points at which the PLR rises by +0.5 units
– Compare the interval to that of the MINOS error of exercise Ex 4.

Exercise 6 – Parallelizing the likelihood calculation

• Check the number of CPU cores available on the current
host (‘cat /proc/cpuinfo’)

• Modify the createNLL() call of ex5 to take an extra
NumCPU(N) argument

– The likelihood calculation will now be parallelized over N cores

• Rerun ex5 and observe the difference in wall-time
execution speed.
– The speedup is best demonstrated on an empty worker node

(your best is lx64slc5)

