An introduction to RooStats

Grégory Schott

Karlsruhe Institute of Technology (KIT)

RooStats tutorials CERN - November 26th 2009

Outline

- What is RooStats? It's a collaborative project between ATLAS,
 CMS and ROOT to provide a consolidated set of statistical tools
 - TWiki: https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
- In this presentation: RooStats introduction: Motivation and general description of the project
 - This morning: RooFit presentation and tutorials
 - This afternoon: Presentation on the concrete implementation / usage of RooStats and tutorials
 - Tomorrow morning: Continued tutorials
- Hope most of you are familiar with the material in L. Lista introductory statistics lecture of last week:
 - See: http://indico.cern.ch/conferenceDisplay.py?confld=73545

Motivations

- Statistical interpretation of data in an analysis
 - useful to have a common, well tested package
- Combination of analyzes within/across experiments
- Be able to compare statistical methods
- Generalize and cleanup statistical tools in ROOT
- Want to agree on statistical conventions
 - avoid apples-to-oranges comparisons

Statistics usage

- Common purposes:
 - point estimation: determine the best estimate of a parameter
 - estimation of confidence/credible interval (multidimensional contours, in 1-D a 2-sided or just a lower or higher limit, ...)
 - hypothesis tests: evaluation of p-value for one or multiple hypotheses (significance)
 - goodness-of-fit: how well a model describes the data
- For these things and for others, RooStats can help you (there are ways to do GOF tests but no specific tools in RooStats yet)

Terminology

- Observable: quantities that are directly measured by an experiment (or their MC predictions) (eg. candidates mass, helicity angle, NNet output) – they form a dataset
- Model: probability density function (PDF) that describes one or multiples observables – parametric or non-parametric.
 PDF are normalized such that their integral over any observable is 1
- Parameter(s) of interest: parameters of the model that one wishes to estimate or constrain (eg. particle mass, crosssection)
- Nuisance parameters: parameters of the model that are uncertain but not "of interest" (systematics-associated normalization or shape parameters)

Features

- Rely on RooFit: provides a developed & flexible basis
- Extension to complex problems
 - Work on arbitrary data and model and can handle many observable, parameter of interest and nuisance parameters
- Combine at analysis level
 - Retain full information for treating correlations
- All statistical methods start from description of likelihood function (or PDF)

Likelihood analysis

- Simple likelihood: $L_i(n_i|r,s_i,b_i) = \frac{e^{-rs_i-b_i}}{n_i!}(rs_i+b_i)^{n_i}$
 - Can be extended to binned likelihood
- Multiple channels: $L(r) = \prod_i L_i(n_i|r,s_i,b_i)$
- With observables; extended, unbinned likelihood:

$$L(\vec{x}|r, s, b, \vec{\theta}_s, \vec{\theta}_b) = \frac{e^{-rs-b}}{n!} (rs + b)^n \prod_{j=1}^n (rs f_s(\vec{x}_j | \vec{\theta}_s) + b f_b(\vec{x}_j | \vec{\theta}_b))$$

- f_s , f_b signal and background distribution from MC or control samples

RooFit PDFs

Example of PDF definition in RooFit:

 $G(x|\mu,\sigma)$

p.d.f.s

```
// define observables and parameters
RooRealVar x("x","x",100,200);
RooRealVar mu("mu","#mu",150);
RooRealVar sigma("sigma","#sigma",5,0,20);
// make a simple model
RooGaussian G("G","gaussian",x,mu,sigma);
G.graphVizTree("GaussianModel.dot");
```

```
// shortcut factory definition of the model
RooWorkspace w;
w.factory(Gaussian::G(x[100,200],mu[150],sigma[5,0,20]);
w.Print();

RooGaussian:G
RooGaussian:G
RooRealVar:x
RooRealVar:x
RooRealVar:
```

RooGaussian::G[x=x mean=mu sigma=sigma] = 1

(some elements adapted from R. Cousins – similar slide also presented recently by G. Cowan)

- Once the statistical problem is described, various methods can be easily applied and compared
 - Bayesian, Frequentist, Likelihood ratio, "CLs", ...
- It is recommended / the community can ask the result be shown with one or another method and to study sampling properties
 - If methods agree → important check of robustness
 - If methods disagree → we learn something:
 - The results are answers to different questions
 - Bayesian methods can have poor frequentist properties
 - Frequentist methods can badly violate likelihood principle

Overview of classes in RooStats

Calculator classes

- ProfileLikelihoodCalculator: interval estimation and hypothesis testing
- BayesianCalculator: adaptive numerical integration
- MCMCCalculator: Bayesian with Markov-Chain Monte Carlo
- NeymanConstruction: classical/frequentist interval calculator
- FeldmanCousins: Neyman construction with likelihood ratio ordering rule
- HybridCalculator: frequentist hypothesis testing with bayesian integration of nuisance parameters
- HypoTestInvertor: inversion of hypothesis tests into a confidence interval

Other RooStats classes and utilities

- SPlot: a technique used to produce a weighted plots of an observable distribution
- ModelConfig: holds all the elements about a model configuration
- HLFactory: wrapper around the RooFit factory to help in building RooFit PDFs
- BernsteinCorrection, utilities specific to number counting analyses, ...

Workspace

- Developed workspace class to facilitate combinations
- Workspaces contains any RooFit object, in particular:
 - Data (binned or unbinned)
 - PDF model
 - Uncertainty / shape of nuisance parameters
- Utilities to correlate objects or ease the description of the PDF model (Factory)
- Can be saved to file, easily shared and used in combination with Workspaces of other analyzes
- Allow to eventually distribute data and model in an electronic form once analysis has been published

Some Atlas/CMS Higgs projections

Neutrino oscillation example

Kyle coded up neutrino oscillation experiment based on description of in Feldman & Cousins's original paper.

Generate toy data at same true parameters and compare RooStats with results in paper

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2}(2\theta) \sin^{2}\left(\frac{1.27\Delta m^{2}L}{E}\right),$$
 (5.3)

where P is the probability for a ν_{μ} to transform into a ν_{e} , L is the distance in km between the creation of the neutrino from meson decay and its interaction in the detector, E is the neutrino energy in GeV, and $\Delta m^{2} = |m_{1}^{2} - m_{2}^{2}|$ in $(eV/c^{2})^{2}$.

To demonstrate how this works in practice, and how it compares to alternative approaches that have been used, we consider a toy model of a typical neutrino oscillation experiment. The toy model is defined by the following parameters: Mesons are assumed to decay to neutrinos uniformly in a region 600 m to 1000 m from the detector. The expected background from conventional ν_e interactions and misidentified ν_μ interactions is assumed to be 100 events in each of 5 energy bins which span the region from 10 to 60 GeV. We assume that the ν_μ flux is such that if $P(\nu_\mu \to \nu_e) = 0.01$ averaged over any bin, then that bin would have an expected additional contribution of 100 events due to $\nu_\mu \to \nu_e$ oscillations.

http://root.cern.ch/root/html/tutorials/roostats/rs401d_FeldmanCousins.C.html

Summary

- Code in CMS and ATLAS combined and improved to form the RooStats project
- RooStats available from ROOT since December 2008 (new release yesterday 5.25.04)
 - Common implementation of methods
 - Speak common language for combination
 - Flexible enough to accommodate "all" cases
 - Most statistical classes one would need are there
- Some improvements needed:
 - Consolidation / speed / documentation / testing
 - Open project, new contributors are welcome

Documentation and user support

- Core developers: K. Cranmer (*Atlas*), L. Moneta (*ROOT*), G. Schott (*CMS*), W. Verkerke (*RooFit*)
- RooStats TWiki: https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome

Documentation:

- RooFit's user's guide: http://root.cern.ch/drupal/content/users-guide (to be completed)
- RooStats manual (in preparation)
- ROOT reference guide: http://root.cern.ch/root/html/ClassIndex.html
- RooFit and RooStats tutorial macros: http://root.cern.ch/root/html/tutorials
- RooFit interface to the Bayesian Analysis Toolkit (<u>BAT</u>): http://cern.ch/schott/public/BCRooInterface

RooStats user support:

- Request support via ROOT talk forum: http://root.cern.ch/phpBB2/viewforum.php?f=15
 (questions on statistical concepts tolerated)
- Submit bugs to ROOT Savannah: https://savannah.cern.ch/bugs/?func=additem&group=savroot
- In many cases, posting also a simple self-contained macro reproducing the problem helps a lot

Contacts for statistical questions:

- ATLAS statistics forum: hn-atlas-physics-Statistics@cern.ch (Cowan, Gross et al)
 - TWiki: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/StatisticsTools
- CMS statistics committee: (Cousins, Demortier et al)
 - via hypernews: hn-cms-statistics@cern.ch or directly: cms-statistics-committee@cern.ch

Before we get started

- RooStats is distributed together with ROOT since version 5.22. In general, the latest version is strongly recommended (and mandatory for these tutorials: ROOT 5.25/04)
- Installation: http://root.cern.ch/drupal/content/development-version-52504
 - Locally using pre-built binaries
 - Compiled from source: ./configure -enable-roofit; make
 - On Ixplus / with AFS (not recommended, WLAN saturation)

```
/afs/cern.ch/sw/lcg/app/releases/ROOT/5.25.04/
```

Usage:

- In CINT: using namespace RooFit; using namespace RooStats
- Strongly recommend you compile your macros:

```
root[0] .L macro.C+
root[1] macro()
```