Nuclear Interactions of **b**-hadrons, **c**-hadrons and **τ**-lepton

> Alberto Ribon CERN PH/SFT

FCC software meeting, CERN, 25 April 2018

The Problem

To take into account the **nuclear interactions** of highly boosted *b*-hadrons, *c*-hadrons and **\tau**-lepton in the beam pipe and tracker of FCC

• Useful values to keep in mind:

B± (longest-lived b-hadron) : $c \cdot \tau = 0.492 \text{ mm}$ (m = 5279 MeV)D± (longest-lived c-hadron) : $c \cdot \tau = 0.312 \text{ mm}$ (m = 1870 MeV) $\tau \pm$: $c \cdot \tau = 0.087 \text{ mm}$ (m = 1777 MeV)

therefore these particles must have kinetic energies of several tens / hundreds of GeV to reach the tracker

Note: the **elastic hadron interactions** of these energetic b-hadrons and c-hadrons can be safely neglected (because they would cause only rare and tiny deviations...)

The "Right" Solution

- Use a Monte Carlo event generator (e.g. Pythia8, Herwig7) to get the multiplicities and kinetic spectra of the *b*-hadrons, *c*-hadrons and *τ*-lepton, produced by the *p-p* beam collisions, capable to reach the beam pipe and the tracker
- Feed these particles to the Geant4-based detector simulation
 - Cannot be done now because Geant4 does **not** include the simulation of nuclear interactions of **b**-hadrons, **c**-hadrons and τ -lepton !
 - Note that electromagnetic physics interactions of these particles (i.e. multiple scattering and ionization) are already included in Geant4 !
 - If these interactions are needed for the next phase of FCC (Technical Design), then a formal request should be made by the FCC Collaboration at the Geant4 Technical Forum
 - This extension of Geant4 requires a few years of work !

The "Work-Around" Solution

The same as the "*Right*" Solution, except that

- Instead of feeding in input to Geant4 *b*-hadrons and *c*-hadrons, we replaced them with kaon mesons (or hyperons, in the case of baryons, but this should be a small correction because of the higher mass and shorter lifetimes with respect to mesons) of the same kinetic energy
 - Geant4 includes the nuclear interactions of **s**-hadrons
 - For multi-GeV energies, the cross sections depend very weakly on the energy, whereas differences with respect *b*-hadrons and *c*-hadrons are expected mostly at low energies (resonances)
- Instead of feeding in input to Geant4 τ -lepton, we replaced it with a **muon** of the same kinetic energy
 - Geant4 includes **µ**-nuclear interactions
 - The dependency of the cross sections with the energy of the lepton is mild (at least at high energies, which is the case of interest)

Note: both the rate of interactions and the secondaries that are produced by these interactions are, of course, approximated f

The "Quick-and-Dirty" Solution (1/3)

Estimate only the probability of hadronic interactions (not the f.s.) in a layer of a given material and thickness assuming a "resonable" value of the mean-free-path in that material

• Due to the weak dependency of the cross sections on the kinetic energy of the projectile, we can use a single mean-free-path λ for each material, regardless of energy of the projectile

 $\lambda \equiv A / (N_A * \rho * \sigma)$

• Then the probability that a particle with mean-free-path λ has an interaction traversing a thickness x is :

 $p = 1 - e(-x/\lambda) \approx x/\lambda$ for $x \ll \lambda$

- One can use this probability in two ways:
 - **1.** During the Geant4 simulation, throwing a flat random number and deciding (e.g. at the level of Geant4 UserSteppingAction) whether the particle (*b*-hadron, *c*-hadron, or τ -lepton) has a nuclear interaction or not
- 2. Or, more simply, by directly estimating the probability of interaction when crossing a layer of a given thickness, e.g. ~1 mm Be (beam-pipe), ~0.5 mm Si + ~0.5 mm C (silicon pixel/layer tracker)

The "Quick-and-Dirty" Solution (2/3)

• Here are two "reasonable" approximations for λ

a. From the cross sections of *K*- and μ at 1 TeV, respectively:

		for b -hadrons & c -hadrons	for t -lepton
Be		σ ~ 150 mb , λ ~ 0.55 m	$\sigma \sim 0.27 \text{ mb}$, $\lambda \sim 300 \text{ m}$
С	:	σ ~ 190 mb , λ ~ 0.53 m	$\sigma \sim 0.35 \text{ mb}$, $\lambda \sim 285 \text{ m}$
ΑΙ	:	σ ~ 380 mb , λ ~ 0.44 m	$\sigma \sim 0.74 \text{ mb}$, $\lambda \sim 225 \text{ m}$
Si		σ ~ 400 mb , λ ~ 0.50 m	$\sigma \sim 0.77 \text{ mb}$, $\lambda \sim 260 \text{ m}$

b. Assuming a conservative (i.e. likely underestimated) "round" λ value for all light elements (relevant for the beam pipe and tracker):

for *b*-hadrons & *c*-hadrons in Be, C, Al, Si : $\lambda \sim 0.40$ m

for τ -lepton in Be, C, Al, Si : $\lambda \sim 200 \text{ m}$

The "Quick-and-Dirty" Solution (3/3)

- Here are the probabilities using method "2 b"
 - For ~1 mm beam pipe (Be) or tracker layer (~0.5 mm Si + ~0.5 mm C) the probability of having a nuclear interaction is:
 - for **b**-hadrons & **c**-hadrons

Prob(1 mm) ≈ 1 mm / 0.4 m = 0.25%

- So ~2 % probability for traversing the beam pipe and the whole tracker (note: very few heavy hadrons will survive enough to do so!)
- for τ -lepton

Prob(1 mm) ≈ 1 mm / 200 m = **0.0005%**

• So << 0.1 % probability for traversing the beam pipe and the whole tracker (note: nearly none of τ -lepton will survive enough to do so!)

Conclusions

- Hadronic interactions of τ -lepton in the FCC beam pipe and tracker are expected to be negligible
 - Due to very low cross sections and its short lifetime
- Hadronic interactions of *b*-hadrons and *c*-hadrons in the FCC beam pipe and tracker are expected to be at the % level
 - Likely within a factor of ~ 2

Note: these conclusions should hold also for other HEP collider experiments, like ATLAS, CMS, LHCb, ILC/CLIC, etc.