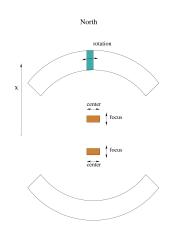
Calibration of the OSU setup (LJU diary 5)

A. Studen H. Kagan N. Clinthorne

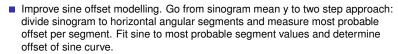
Department of Physics, Ohio State University. Columbus, OH

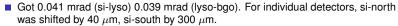
Institut Jožef Stefan Odsek za eksperimentalno fiziko osnovnih delcev andrej.studen@ijs.si

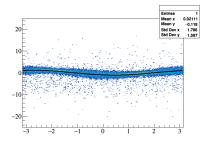


October 4, 2018

PET: layout

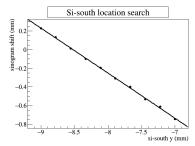

- Calibration refers to (micro) positioning of the detectors in the detector model
- A total of 5 parameters to be estimated: x and y of both Si sensors, rotation of the PSPMT module. Distance of PSPMT fixed.
- 4 runs at disposal: [20180920/16 si: 32k] [20180926/1 sibgo: 29k] [20180924/1 silyso: 10.5k] [20180928/1 1 lysobgo: 81k]
- Constraints: fixed rotation axis, equivalent to source following a sine curve with 0 offset focus of the source; exploit parallax to determine axial position of the sensor.


Parameters corellated



PET: initial trials

- Couple of false starts:
- Overconstrained model tried first: allow only for y positions + rotation.
 Used sibgo run to fix si-north, si run to fix si-south si-lyso to determine rotation and compare to
 bgo-lyso rotation
- Rotations were 0.034 mrad (si-lyso) to 0.039 mrad (lyso-bgo).



PET: initial trials

- Very little noise in location search plots
- replaced binary search with data fitting. Binary search works well with sinogram mean y, but fitting noise may overwhelm the method at short steps.
- based on the slope and variation, expected accuracy is in μ m.

- Discrepancy in PSPMT angle (remember: one arm goes through si-bgo, si-si and si-lyso, the other through lyso-bgo) is alleviated if I allow axial (along x) shift of si detectors.
- incorporate x-searching into calibration algorithm

PET: calibration strategy 2.0

- Start with well defined sensors: bgo
- Use runs that collect bgo data to calibrate others: sibgo for si, lysobgo for PSPMT.
- For sibgo a y/x pairing plot can be made assume si-north is at a particular axial location x, the fixed axis requirement yields a corresponding y. Range between -130 and -120 should suffice
- The lysobgo run should yield a definitive lyso rotation.
- Once PSPMT rotation is known, similar plot as for si-north can be made using si-lyso data, again using only the fixed axis requirement.
- Then, si-north/si-south correlation can be made. At a particular distance of one detector module (say si-north) the fixed axis requirement will yield a particular si-south distance/offset combination.
- The si-north/si-south pairings will all yield a particular source focus on the si-si sinogram. The one with lowest spread/best resultion will be selected as the micro-positioning optimum.

PET: calibration 2.0 initial results

- Automated procedure
- First results showing relation of x/y coordinates for fixed axis with si-north, based on the si-bgo run.

/home/studen/temp/calibration2/siNort

