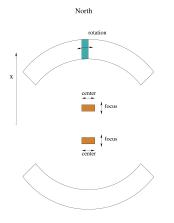
Calibration of the OSU setup (LJU diary 5)

A. Studen H. Kagan N. Clinthorne

Department of Physics, Ohio State University, Columbus, OH

Institut Jožef Stefan Odsek za eksperimentalno fiziko osnovnih delcev andrej.studen@ijs.si


October 12, 2018

Studen	
ljuDiary	

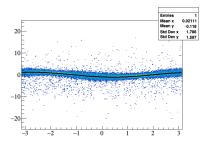
イロト イヨト イヨト イヨト

PET: layout

Studen liuDiarv

- Calibration refers to (micro) positioning of the detectors in the detector model
- A total of 5 parameters to be estimated: x and y of both Si sensors, rotation of the PSPMT module. Distance of PSPMT fixed.
- 4 runs at disposal:
 [20180920/16 si: 32k]
 [20180926/1 sibgo: 29k]
 [20180924/1 silyso: 10.5k]
 [20180928/1 1 lysobgo: 81k]
- Constraints:

fixed rotation axis, equivalent to source following a sine curve with 0 offset focus of the source; exploit parallax to determine axial position of the sensor.

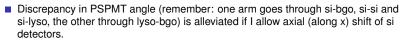

イロト イヨト イヨト イヨト

Parameters corellated.

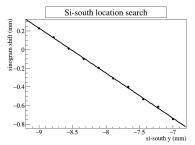
US

PET: initial trials

- Couple of false starts:
- Overconstrained model tried first: allow only for y positions + rotation. Used sibgo run to fix si-north, si run to fix si-south si-lyso to determine rotation and compare to bgo-lyso rotation
- Rotations were 0.034 mrad (si-lyso) to 0.039 mrad (lyso-bgo).


イロト イヨト イヨト イヨト

- Improve sine offset modelling. Go from sinogram mean y to two step approach: divide sinogram to horizontal angular segments and measure most probable offset per segment. Fit sine to most probable segment values and determine offset of sine curve.
- Got 0.041 mrad (si-lyso) 0.039 mrad (lyso-bgo). For individual detectors, si-north was shifted by 40 μm, si-south by 300 μm.

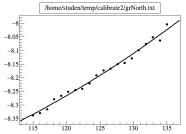


PET: initial trials

- Very little noise in location search plots
- replaced binary search with data fitting. Binary search works well with sinogram mean y, but fitting noise may overwhelm the method at short steps.
- based on the slope and variation, expected accuracy is in μm.

incorporate x-searching into calibration algorithm

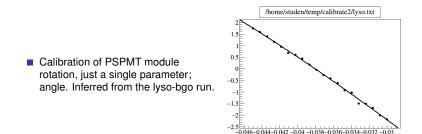
PET: calibration strategy 2.0


- Start with well defined sensors: bgo
- Use runs that collect bgo data to calibrate others: sibgo for si, lysobgo for PSPMT.
- For sibgo a y/x pairing plot can be made assume si-north is at a particular axial location x, the fixed axis requirement yields a corresponding y. Range between -130 and -120 should suffice.
- The lysobgo run should yield a definitive lyso rotation.
- Once PSPMT rotation is known, similar plot as for si-north can be made using si-lyso data, again using only the fixed axis requirement.
- Then, si-north/si-south correlation can be made. At a particular distance of one detector module (say si-north) the fixed axis requirement will yield a particular si-south distance/offset combination.
- The si-north/si-south pairings will all yield a particular source focus on the si-si sinogram. The one with lowest spread/best resultion will be selected as the micro-positioning optimum.

Studen			
ljuDiary			

・ロト ・回ト ・ヨト ・ヨト

Calibration 2.0: si-north

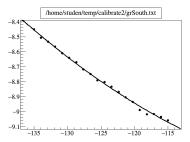

- Calibration of Si-north position, relation of x/y coordinates requiring fixed rotation axis with si-north, based on the si-bgo run.
- Careful checks on fit results with bad fits removed from further stages

A D > A B >

Studen	
liuDiary	

Calibration 2.0: lyso rotation

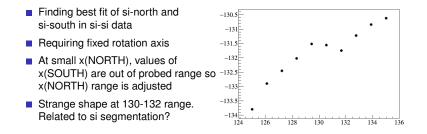
Studen			


IJS

イロト イヨト イヨト イヨト

p**os**ta

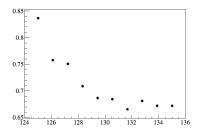
Calibration 2.0: si-south


- Calibration of Si-south position, relation of x/y coordinates requiring fixed rotation axis with si-north, based on the si-lyso run.
- Careful checks on fit results with bad fits removed from further stages
- Steeper shift in y per shift in x than si-north (SOUTH: 0.7 mm/20 mm NORTH: 0.35 mm/20 mm)

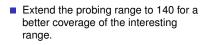
 $\langle \Box \rangle \langle \Box \rangle$

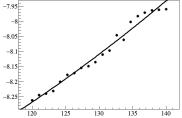
Studen liuDiarv

Calibration 2.0: matching of si



A D > A B >

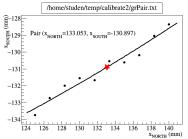

Studen liuDiarv IJS


Calibration 2.0: finding best resolution

- Using best fit of si-north and si-south in si-si data
- Plotting average sinogram resolution in tangential coordinate, grouping together to π/10 bins
- Minimum at the boundary resetting the positioning range. Require recalculation of siNorth and siPairs/siResolution graphs.

Calibration 2.0: si-north rework

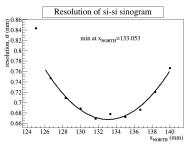
 $\langle \Box \rangle \langle \Box \rangle$


Studen	
ljuDiary	

ъ

n<mark>ausun</mark>

Calibration 2.0: updated matching of si


- Finding best fit of si-north and si-south in si-si data
- Requiring fixed rotation axis
- At small x(NORTH), values of x(SOUTH) are out of probed range so x(NORTH) range is adjusted
- Reworked to a better range. Optimum point (from resolution graphs) is indicated.

<ロ> <同> <同> < 同> < 三> < 三

Calibration 2.0: finding best resolution

- Using best fit of si-north and si-south in si-si data
- Plotting average sinogram resolution in tangential coordinate, grouping together to π/10 bins
- Minimum shifted from boundary. Fit with a parabola to get the optimum position.

イロト イヨト イヨト イヨト

- Optimum position NORTH: x=133.053, y=-8.05189
- SOUTH x=-130.897, y=-8.60652
- LYSO fa=-0.0380459

Studen IjuDiary **IJS**