Introduction to Particle Physics and Cosmology

V. Kartvelishvili

Lancaster University

Georgian Teachers' Programme

CERN, 1-2 April 2019

- Concepts and methods of particle physics
\uparrow The Standard Model (SM)
- CERN and its accelerator structure
\checkmark Large Hadron Collider (LHC)
- Proton-proton collisions, luminosity and triggers
- Lepton pair production: $J / \psi, \Upsilon, Z, \ldots$
- Other SM measurements: $t \bar{t}, W^{ \pm}, Z Z, \ldots$
\uparrow Observation of the Higgs Boson
- Links with Cosmology
- Dark matter and dark energy
- Unanswered questions in particle physics and in cosmology
- Summary and outlook

Constituents of Matter

Quarks

Particle Physics - What's This About?

'Elementary' Particles - $e, p, n, \nu, \mu, \tau, \gamma, W, Z \ldots$ and their interactions.

You should already know a few things about them.

Is Particle Physics a difficult subject?

Compared to other areas of physics (nuclear, solid state, bio-...) and other sciences (botany, chemistry, zoology, medicine) PP is actually very simple:
\uparrow Particles have (relatively) few properties ('quantum numbers').

- These properties usually have few discrete values.
\uparrow Particles obey very simple, relatively few, well-defined laws.
- All elementary particles of the same type are absolutely identical.
- The world of particles is so far from our everyday experience, that all these simple properties and simple laws may look and seem unnatural and weird;

What can we do?
'Friendly' names: strangeness, charm, colour, top, bottom. . . Find analogies and simple rules

- Many mathematical methods used to describe the world of particles are quite advanced (Group Theory, Quantum Field Theory, Advanced Statistics ...)

What can we do?
Use simplified maths, skip derivations...

- Your intuition fails to work

What can we do?
Build our intuition by solving lots of various problems

What's the Scale?

'Elementary' Particles: the smallest constituents of matter (known so far): leptons and quarks, and also the interaction carriers: photons γ, gluons g, $W^{ \pm}$and Z^{0} bosons.

Well-established models and theories at present exclude gravitational interactions:

1. quantum theory of gravity has not been built yet;
2. may (should!) be tied to properties of space-time at tiny scales;
3. too weak to matter for particles under 'usual' circumstances.

However, weak, electromagnetic and strong interactions are understood and described reasonably well.

Main properties of particles: mass m, charge e, spin s.
For an electron in SI system:

$$
\begin{aligned}
m_{e} & =9.109 \times 10^{-31} \mathrm{~kg} \\
e & =-1.602 \times 10^{-19} \mathrm{C} \\
s_{z} & = \pm \hbar / 2= \pm(1 / 2) \times 1.055 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
\end{aligned}
$$

Particle physicists do not use SI system. Instead, a particle physicist would write:

$$
\begin{aligned}
m_{e} & =0.51 \mathrm{MeV} / c^{2} \\
e & =-1 \text { proton charge } \\
s_{z} & = \pm 1 / 2
\end{aligned}
$$

The last equation suggests: in particle physics

$$
\hbar=1.055 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=1
$$

which, for one thing, states that in particle physics the product of units of [energy] and [time] is dimensionless.

So, it's natural to choose units such that $\hbar=1$. This means that
[energy] $\times[$ time $]=1 \quad$ and also $\quad[$ momentum $] \times[$ distance $]=1$
Now, remember the relativistic relation between Energy E, momentum pand mass m :

$$
E^{2}=\mathbf{p}^{2} c^{2}+m^{2} c^{4}
$$

Relativistic particles move with speeds close to speed of light. Carrying all these huge factors like $(300000000 \mathrm{~m} / \mathrm{s})^{2}$ around will be avoided in a system of units where $c=1$, which simply means that [new unit of time] is [old unit of time]/ c.

The choice $\hbar=1$ and $c=1$ would mean that
\uparrow Energy, momentum and mass are measured in the same units

- Angular momentum is dimensionless
- Time and distance are measured in the same units
- Energy is inverse of time
\uparrow One needs just one dimesional unit, which is usually chosen as the unit of energy
- In Particle Physics this is 1 GeV

The system of units with $\hbar=1$ and $c=1$ is called the Natural system:

$$
\begin{aligned}
1 \text { unit of length } & =1 \mathrm{GeV}^{-1} \simeq 0.1978 \mathrm{fm} \\
1 \text { unit of time } & =1 \mathrm{GeV}^{-1} \simeq 0.6588 \cdot 10^{-24} \mathrm{~s} \\
1 \text { unit of energy } & =1 \mathrm{GeV} \\
1 \text { unit of momentum } & =1 \mathrm{GeV} \quad \text { sometimes } \mathrm{GeV} / c \\
1 \text { unit of mass } & =1 \mathrm{GeV} \quad \text { sometimes } \mathrm{GeV} / c^{2}
\end{aligned}
$$

Note: $1 \mathrm{GeV}=1000 \mathrm{MeV}$ and $(1 \mathrm{GeV})^{-1}=(1000 \mathrm{MeV})^{-1}$, but $1000 \mathrm{GeV}^{-1}=1 \mathrm{MeV}^{-1}$
One more unit: barn b for cross section: $1 \mathrm{~b}=10^{-24} \mathrm{~cm}^{2}$.
One barn is far too big a unit for particle physics:

$$
1 \mathrm{~b}=10^{3} \mathrm{mb}=10^{6} \mu \mathrm{~b}=10^{9} \mathrm{nb}=10^{12} \mathrm{pb}=10^{15} \mathrm{fb}
$$

The cross sections of most interesting processes in particle physics are usually measured in femtobarns fb.

Rare processes have smaller cross sections, and vice-versa.

Three "generations"

Getting heavier and heavier

Top quark especially heavy

No clue why...

Electron 0.000511 GeV

Up Quark 0.0025 GeV

Charm Quark 1.27 GeV

Muon 0.1057 GeV

Tau 1.777 GeV

Top Quark 172 GeV

Down Quark 0.005 GeV

Bottom Quark
4.2 GeV

CERN 'overview'

Birdseye view of CERN and neighbourhood

Alps, lake Geneva, Geneva airport

LHC ring shown as the red line

A very long chain of accelerators, culminating in the Large Hadron Collider (LHC)

Producing beams of protons, ions, antiprotons. . . even neutrinos!

Lots of experiments, all very interesting and important

I will only touch the one I know better...

The Large Hadron Collider (LHC)

Overall view of the LHC experiments.

LHC is the flagship of CERN research programme, colliding two proton beams with energy of 13 TeV

One of the largest and most complicated engineering constructions in human history

Two multi-purpose experiments: ATLAS and CMS
Others - such as LHCb and ALICE - are more specialised

LHC tunnel, ATLAS and CMS
Tunnel 27 km long
100 m under the surface 2000 magnets of various types

Two huge multi-purpose experimental installations: ATLAS and CMS

Georgian Teachers, 1-2 Apr 2019

High energy of constituents is needed to produce something new and interesting

A proton is a bunch of quarks and gluons, each carrying a fraction of energy 13 TeV of $p p$ collision energy barely enough to produce a 2 TeV object. . .

Quark and gluon distributions in a proton

Only 30\% of proton energy is carried by the three constituent uud quarks Most of proton energy is carried by gluons

The "sea" of quark-antiquark pairs is also important

$$
\begin{gathered}
M^{2}=x_{1} \times x_{2} \times(13 \mathrm{TeV})^{2} \\
d \sigma \sim f_{1}\left(x_{1}\right) \times f_{2}\left(x_{2}\right) \times \hat{\sigma}\left(M^{2}\right)
\end{gathered}
$$

Cross sections and units

- The intensity of various collisions is measured in terms of the cross section for particular reactions
\uparrow Cross section is the effective area which needs to be crossed by a test particle to get scattered
\checkmark Since early days of nuclear physics, measured in barns

$$
1 \text { barn }=10^{-28} \mathrm{~m}^{2}=100 \mathrm{fm}^{2}
$$

is about the size of lead or uranium nucleus

- Total cross section of proton-proton collisions is about 100 millibarn at 7 TeV
- Interesting processes like Higgs production have much smaller probabilities, and hence much smaller cross sections, measured in picobarns (10^{-12} barn) or femtobarns (10^{-15} barn) or even attobarns (10^{-18} barn)
- The smaller the cross section of a process, the fewer events you get
- Integrated luminosity of $100 \mathrm{pb}^{-1}$ means that if the cross section is 1 pb , you will see 100 events

In early days of LHC: 100's of collisions / sec

Now:
many millions / sec

No time for viewing events one-by one...

Full computing power of CERN only allows to reconstruct "just" a few hundred events per second
Very careful selection ("triggering") of potentially interesting events is required!

1974: discovery of J / ψ
\Leftarrow Discovery 1: Ting's group

$$
p N \rightarrow e^{+} e^{-} X
$$

at $P_{\text {lab }}=30 \mathrm{GeV} / \mathrm{c}$
[Aubert et al., PRL, 6/11/1974]
Found a peak in $e^{+} e^{-}$inv.mass at 3.1 GeV , called it J.
Discovery 2: Richter's group \Rightarrow
(a) $e^{+} e^{-} \rightarrow$ hadrons
(b) $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
(c) $e^{+} e^{-} \rightarrow e^{+} e^{-}$
[Augustin et al., PRL, 7/11/1974]
Found a peak in all these three cross-sections, at the c.m.s. energy 3.1 GeV ; called it ψ.

Now we know: J / ψ is a bound state of charm-anticharm, $c \bar{c}$.

History of 20th century Particle Physics in one plot

$p p \rightarrow J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right)+X$
Lancaster
University

V. Kartvelishvili (Lancaster U)

Fraction of non-promptly produced J / ψ

$b \bar{b}$ bound states: Υ system

Spectroscopy similar to hydrogen atom
$\Upsilon(1 S)$: ground state
$\Upsilon(2 S, 3 S)$: radial excitations

Three families of χ_{b} : orbital excitations, $L=1$

Until 22 December 2011, only $\chi_{b}(1 P)$ and $\chi_{b}(2 P)$ were observed

Observed bottomonium radiative decays in ATLAS, $L=4.4 \mathrm{fb}$

All three χ_{b} peaks as seen by ATLAS

Event with $\chi_{b}(3 P)$ candidate

Integrated luminosity in 2010, 2012, 2018

Look at the scales on y-axes: $1 \mathrm{fb}^{-1}=1000 \mathrm{pb}^{-1}$

Dramatic progress over the years, meaning that one can now access less and less frequent processes...
...and at a higher and higher energy!

Run Number: 201289, Event Number: 24151616 Date: 2012-04-15 16:52:58 CEST

There are $20+$ collisions in one bunch crossing, with a $Z \rightarrow \mu^{+} \mu^{-}$candidate produced in one of them.
$W^{+} \rightarrow \mu^{+} \nu_{\mu}$
$W^{-} \rightarrow e^{-} \bar{\nu}_{e}$

Neutrinos escape detection
\Rightarrow missing P_{T}

[^0]

Decay modes of the Standard Model Higgs Boson

Higgs decay Branching Ratios vs SM

Lancaster University

Questions to the Standard Model

There are three types of interactions in the Standard Model, and the variety of gauge bosons, the interaction carriers: γ for electromagnetic, $W^{ \pm}, Z^{0}$ for weak, g for strong.
\uparrow Why are these three types so different - and the fourth, gravity, even more so?

- Why are there three generations of quarks and leptons?
- Why fractional electric charges of quarks?
- Why are the fermion masses so different?
- What determines the mixing of various generations?

These and many more questions cannot be answered within SM.

We need a bigger theory...

- Universe is made up of $\sim 10^{11}$ galaxies; each galaxy contains $10^{10}-10^{12}$ stars
- Cosmology: science about the history of the Universe
\uparrow Assumption: laws of physics have not changed along the way
\checkmark Method 1: observe the Universe evolution NOW and try to extrapolate backward
\uparrow Method 2: assume some starting point (the Big Bang) and extrapolate forward
- The overall established picture in modern cosmology is arguably as stable and solid as the Standard Model in Particle Physics, but it also has its unanswered questions
\uparrow The hope (from both camps) is that the answers may be shared!

History of the Universe

Glashow's serpent
Lancaster

As usual, " natural" system of units:
$\leftrightarrow \hbar=1, c=1, k_{B}=1$
\checkmark distance \sim time
\uparrow Energy $\sim 1 /$ distance
\uparrow Temperature \sim Energy

- Hence, Planck's mass

$$
\begin{aligned}
M_{p}=\sqrt{\frac{\hbar c}{G_{N}}} & =10^{19} \mathrm{GeV} \\
& \sim 10^{-25} \mathrm{~cm}
\end{aligned}
$$

Experimental fact: Universe is expanding

Light from distant galaxies is red-shifted (Doppler effect)

The larger the distance, the more the shift (can be measured precisely)

The light wave expands with space, hence the shift towards lower frequency

Hubble constant: $70 \mathrm{~km} / \mathrm{s}$ per Megaparsec

Once, the Universe was 3000 times smaller - and 3000 times hotter than today

Cosmic Microwave Background 2.7 K today: photons wandering in space since then

Almost isotropic (same in all directions) - but NOT EXACTLY!

CMB anisotropy

Ripples from times 300000 years ago, at the level of 10^{-3}
These small non-uniformities may be signals from the seeds of galaxy formation

Polarisation fluctuations
Lancaster
University
BICEP2 B-mode signal

Possible signs of gravitational waves from the Big Bang?

Bariogenesis

Once the Universe was a billion times smaller and hotter than today

Light chemical elements were formed: $H e^{4}, D, H e^{3}, L i, \ldots$

Relative abundance of these elements can be predicted by theory

Depends on density of matter and number of types of particles

Does not seem to be enough to stop expansion, or even to form the galaxies like ours:

Cosmological inflation

Basic idea: very early, about maybe $10^{-35} \mathrm{~s}$ after the Big Bang, the expansion was exponentially fast

Can explain why the universe looks almost flat now

Spherical Space

Flat Space

Hyperbolic Space

Fate of the Universe depends on this:

Energy density budget of the Universe

There is some critical value of the energy density which keeps the balance between expansion and contraction of the universe.
$\Omega=1$ corresponds to
a flat universe - close
to what we see today

Latest measurements show that there are different components to this density:

Evidence for Dark Matter - I

Galaxies rotate more rapidly than allowed by centripetal force due to visible matter

X-ray emitting gas held in place by extra dark matter

- Why is the Universe so big and old?
- Why is its geometry nearly Euclidean?
almost flat: density nearly critical
-Where did the matter come from?
I proton for every $1,000,000,000$ photons
- How did structures form?
ripples + invisible dark matter?
-What is the dark matter?
- What is the dark energy?

The hope is that Particle Physics can help answer at least some of these!
\uparrow Is there a bigger symmetry group, which will become visible at higher energies? \Rightarrow Grand Unification

- Or maybe the Poincaré-Lorentz invariance group can be extended to include anticummutation relations?
\Rightarrow Supersymmetry
- Or maybe our space-time has more than $3+1$ dimensions, some of which are "compactified" ?
\Rightarrow Large extra dimensions

These, and many other, theories exist - and predict some observable effects.

Physicists are searching for them, in a hope to answer some of the questions...

ATLAS SUSY Searches* - 95\% CL Lower Limits

ATLAS Preliminary $\sqrt{s}=7,8 \mathrm{TeV}$

[^1]
Exotics searches: lower limits

Lancaster

ATLAS Exotics Searches* - 95\% CL Lower Limits (Status: May 2013)

Large ED (ADD) : monojet $+E_{T \text {,miss }}$ Large ED (ADD) : monophoton $+E_{T \text {,miss }}$ Large ED (ADD) : diphoton \& dilepton, $m_{\gamma \gamma / \|}$

UED : diphoton $+E_{T, \text { miss }}$
S^{1} / Z_{2} ED : dilepton, $m_{\|}$ RS1 : dilepton, $m_{\| I}$
RS1: WW resonance, $m_{T, \text { lvlv }}$ Bulk RS: ZZ resonance, m_{IJj} $R S g_{k t} \rightarrow t^{f}(B R=0.925): t t^{\prime} \rightarrow$ l+jets, m ADD BH $\left(M_{T H} / M_{\mathrm{D}}=3\right)$: SS dimuon, N, ADD BH ($M_{T H} / M_{\mathrm{D}}=3$) : leptons + jets, Σp

Quantum black hole : dijet, $\mathrm{F}_{\chi}\left(m_{\mathrm{ij}}{ }^{\top}\right)$
qq9q cóntact interaction : $\chi\left(m^{2}\right)$
qq\| CI : ee $\& \mu \mu$, ij $_{\|}$
uutt $\mathrm{Cl}: \mathrm{SS}$ dilepton + jets $+E_{T \text {,miss }}$
Z' (SSM) : $m_{\text {ee/u }}$ $Z^{\prime}(S S M): m_{\tau \tau}$
Z^{\prime} (leptophobic topcolor) : tt \rightarrow I+jets, m_{t} W' (SSM) : $m_{\mathrm{T}, \mathrm{e} / \mu}^{\mathrm{t}}$
$\mathrm{W}^{\prime}\left(\rightarrow \mathrm{tq}, \mathrm{g}_{\mathrm{R}}=1\right): m_{\mathrm{tq}}$ $W^{\prime}{ }^{\prime}(\rightarrow \mathrm{tb}, \mathrm{LRSM}): m_{\text {th }}^{\text {ta }}$
Scalar LQ pair $(\beta=1)$: kin. vars. in eejj, evjj Scalar LQ pair $(\beta=1)$: kin. vars. in $\mu \mu \mathrm{jj}, \mu v \mathrm{jj}$ Scalar LQ pair $(\beta=1)$: kin. vars. in $\tau \tau j j, \tau v j j$

4th generation : b'b' \rightarrow SS dilepton + jets $+E$ WbWb
Vector-like quark : TT $\rightarrow \stackrel{T}{\mathrm{H}, \text { miss }+\mathrm{X}}$ Vector-like quark: CC, $m_{\text {lvq }}$
Excited quủàrks : γ-jèt reso nance, m
Excited quarks : dijet resonance, ${\underset{m}{\mathrm{jij}}}_{\gamma \mathrm{jet}}$
Excited b quark: W-t resonance, $m_{\text {wt }}$ Excited leptons: l- γ resonance, m
Techni-hadrons (LSTC) : dilepton, $m_{\text {ee } / \mu \mu}$
Techni-hadrons (LSTC) : WZ resonance ($\left(\|\|), m_{w z}\right.$
Major. neutr. (LRSM, no mixing) : 2-lep + jets
む Heavy lepton $N^{ \pm}$(type III seesaw) : Z-I resonance, $m_{\text {ZI }}$
H_{L}^{++}(DY prod., $\left.B R\left(H_{L}^{+} \rightarrow \|\right)=1\right)$: SS ee $(\mu \mu), m_{\|}$
Color octet scalar : dijet resonance, m_{ij}
Multi-charged particles (DY prod.) : highly ionizing tracks
Magnetic monopoles (DY prod.) : highly ionizing tracks

Summary and outlook

- Huge amount of work has been done by CERN experiments
- Antimatter has been created and studied in some detail
- The Higgs boson discovered in 2012 so far looks like the Standard Model Higgs
- The Standard Model is standing strong - no SUSY, no sign of any exotics either. . .
- Some data still to be analysed, and much more data is still to come
- Hoping for many fascinating discoveries in the near future!

1. Lancaster Particle Physics Package for A-level students:
http://www.hep.lancs.ac.uk/package/
Some basic stuff - worth a look or two (feedback welcome)
2. Paricle Physics in the UK website, plenty of info and links:
http://hepweb.rl.ac.uk/ppUK/
3. FNAL (Fermi National Accelerator Laboratory), home of the Tevatron: http://www.fnal.gov/
4. CERN (European Centre for Nuclear Research), home of LEP and LHC: http://public.web.cern.ch/public/
5. The ultimate resource: Particle Data Group website http://pdg.lbl.gov
The official reference for all particle data. Many useful review articles, too

[^0]: $\bar{p} p p \rightarrow X$
 $7 \mathrm{TeV}, 20 \mu \mathrm{~b}$, ${ }^{-1}$ Nat. Commun. 2, 463 (2011) $8 \mathrm{TeV}, 500 \mu \mathrm{~b}^{-1}$, Phys.Lett. B761 158 (2016) $13 \mathrm{TeV}, 60 \mu \mathrm{~b}^{\text {b }}$, Phys. Rev. Lett. 117182002 (2) ฐ $p p \rightarrow W$ ॠ $p p \rightarrow Z / \gamma^{*}$
 $7 \mathrm{TeV}, 4.6 \mathrm{ft}^{-1}$, arXiv: 1612.03016 (for ZW) 8
 TeV, $20.2 \mathrm{fo}^{-1}$, JHEP 02, 117 (2017) (for Z)
 $13 \mathrm{TeV}, 81 \mathrm{pb}^{-1}$, PLB 759 (2016) 601 (for W)
 $13 \mathrm{TeV}, 3.2 \mathrm{fb}^{-1}$, JHEP 02, 117 (2017) (for Z)
 $\boxed{I} p p \rightarrow t i$
 7 TeV, $4.6 \mathrm{fb}^{-1}$, Eur. Phys. J. C 74:3109 (2014)
 $8 \mathrm{TeV}, 20.3 \mathrm{fb}^{-1}$, Eur. Phys. J.C 74:3109 (2014)
 $13 \mathrm{TeV}, 3.2 \mathrm{fb}^{-1}$, arXiv: 1606.02699
 克 $p p \rightarrow t q$
 $7 \mathrm{TeV}, 4.6 \mathrm{fb}^{-1}, \mathrm{PRD} 90,112006$ (2014)
 8 TeV, $20.3 \mathrm{fo}^{-1}$, ar Xiv: 1702.02859
 $13 \mathrm{TeV}, 3.2 \mathrm{fb}^{-1}$, ar Xiv: 1609.03920
 § $p p \rightarrow H$
 $7 \mathrm{TeV}, 4.5 \mathrm{fb}^{-4}$, Eur. Phys. J. C76 (2016) 6 8 TeV, $20.3 \mathrm{fo}^{-1}$, Eur. Phys. J.C76 (2016) 6 $13 \mathrm{TeV}, 36.1 \mathrm{fo}^{-1}$, ATLAS-CONF-2017-047 $\widetilde{\Omega} p p \rightarrow W W$
 $7 \mathrm{TeV}, 4.6 \mathrm{fb}^{-1}, \mathrm{PRD} 87,112001$ (2013) 8 TeV, $20.3 \mathrm{fo}^{-1}$, JHEP 09029 (2016)
 $13 \mathrm{TeV}, 3.2 \mathrm{fb}^{-4}$, arXiv: 1702.04519
 ₹ $p p \rightarrow W Z$
 $7 \mathrm{TeV}, 4.6 \mathrm{fo}^{-1}$. Eur. Phys. J. C (2012) 72:2173
 $8 \mathrm{TeV}, 20.3 \mathrm{fb}^{-1}$, PRD 93, 092004 (2016) $13 \mathrm{TeV}, 3.2 \mathrm{ft}^{4}$. Phys. Lett. B 762 (2016)
 $\nexists p p \rightarrow Z Z$
 $7 \mathrm{TeV}, 4.6 \mathrm{fb}{ }^{4}$, JHEP 03, 128 (2013)
 $8 \mathrm{TeV}, 20.3 \mathrm{fb}^{-1}$, JHEP 01, 099 (2017)
 $13 \mathrm{TeV}, 36.1 \mathrm{fb}^{-1}$, ATLAS-CONF-2017-031

[^1]: *Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

