Introduction to CMS

Alexi Mestvirishvili
University of Iowa and CERN

October 2014 Georgian teachers program

The study of elementary particles, fields and their interactions

matter particles

	1st gen.	2nd gen.	3rd gen.
QU	(U)	(a)	
A R	up	charm	top
K			(b)
	down	strange	bottom
L E	(Ve)	(V)	V
P T	e neutrino	μ neutrino	r neutrino
ON	(e)	$(\boldsymbol{\mu})$	(\boldsymbol{t})
Take .	electron	muon	tau

Gauge particles

scalar particle(s)

Elements of the Standard Model

Basic principles

Need "general-purpose" experiment covering as much of the solid angle as possible (" 4π ") since we don't know how New Physics will manifest itsel Detectors must be able to detect as many particles and signatures as possible: e, μ , τ , ν , γ , jets, b-quarks,

Momentum / charge of tracks and secondary vertices (e.g. from b-quark decays) are measured in central tracker (Silicon layers).

Energy and positions of electrons and photons measured in high resolution electromagnetic calorimeters. ($\sim 0.5\%$ @ $E_T \sim 50$ GeV)

Energy and position of hadrons and jets measured mainly in hadronic calorimeters

Muons identified and momentum measured in external muon spectrometer (+central tracker) dp/p<1% @ 100GeV and <10%@1 TeV

Neutrinos "detected and measured" through measurement of missing transverse energy (E_T^{miss}) in calorimeters (hermeticity; good Missing Et resolution)

The Compact Muon Solenoid (CMS)

Total weight: 14,000 t

Overall diameter: 15 m

Overall length: 21.6 m

The Large Solenoidal Magnet of CMS

- Current of 20kA: Superconducting (NbTi) cable inside a huge cryostat operated at ~4K. B=4T
- Huge dimensions: 6m diameter x
 12.5m length (built in 5 modules).

The Silicon Tracker.

The Electromagnetic Calorimeter ECAL

Characteristics of PbWO₄

 $X_0 = 0.89$ cm

 $\rho=8.28 g/cm^3$

 $R_{\rm M}$ (Molière radius) = 2.2cm

Parameter	Barrel	Endcaps
Coverage	η <1.48	1.48< η <3.0
Δφ 🗴 Δη	0.0175 x 0.0175	0.0175 x 0.0175 to 0.05 x 0.05
Depth in X ₀	25.8	24.7
# of crystals	61200	14648
Volume	8.14m ³	2.7m ³
Xtal mass (t)	67.4	22.0

The hadron calorimeter HCAL

CMS HCAL is constructed in 3 parts:

Barrel HCAL (HB)

Brass plates interleaved wit

plastic scintillator embedded with

wavelength-shifting optical fibres

(photo top right)

Forward HCAL (HF)

Steel wedges stuffed with quartz fibres ~10000 channels total

HB and **HE**

Muon Detectors

CMS trigger system

Schematic representation of the trigger system

Racks and crates in SC housing FEE and trigger system

8 years ago.

Lowering of YE1 and HB

The heart of CMS lands safely (Feb07)

Installation of the services

Installation of the tracker

It took 16 years to put everything together

September 08: CMS is ready

Different particles passing CMS experiment

1 billion cosmics were recorded to study the most subtle features of our detector

November/December 2009 first LHC collisions (0.9 and 2.36 TeV)

Reconstructed particles using CMS detector

Reconstructed particles using CMS detector

Ξ_b particle

Upsilon particles - Y(1S,2S and 3S)

The new, heavy particle with mass around 125 GeV

