Introduction to CMS Alexi Mestvirishvili University of Iowa and CERN October 2014 Georgian teachers program ## The study of elementary particles, fields and their interactions #### matter particles | | 1st gen. | 2nd gen. | 3rd gen. | |--------|-------------|----------------------|--------------------| | QU | (U) | (a) | | | A
R | up | charm | top | | K | | | (b) | | | down | strange | bottom | | L
E | (Ve) | (V) | V | | P
T | e neutrino | μ neutrino | r neutrino | | ON | (e) | $(\boldsymbol{\mu})$ | (\boldsymbol{t}) | | Take . | electron | muon | tau | #### **Gauge particles** scalar particle(s) Elements of the Standard Model ### **Basic principles** Need "general-purpose" experiment covering as much of the solid angle as possible (" 4π ") since we don't know how New Physics will manifest itsel Detectors must be able to detect as many particles and signatures as possible: e, μ , τ , ν , γ , jets, b-quarks, Momentum / charge of tracks and secondary vertices (e.g. from b-quark decays) are measured in central tracker (Silicon layers). Energy and positions of electrons and photons measured in high resolution electromagnetic calorimeters. ($\sim 0.5\%$ @ $E_T \sim 50$ GeV) Energy and position of hadrons and jets measured mainly in hadronic calorimeters Muons identified and momentum measured in external muon spectrometer (+central tracker) dp/p<1% @ 100GeV and <10%@1 TeV Neutrinos "detected and measured" through measurement of missing transverse energy (E_T^{miss}) in calorimeters (hermeticity; good Missing Et resolution) ### The Compact Muon Solenoid (CMS) Total weight: 14,000 t Overall diameter: 15 m Overall length: 21.6 m ### The Large Solenoidal Magnet of CMS - Current of 20kA: Superconducting (NbTi) cable inside a huge cryostat operated at ~4K. B=4T - Huge dimensions: 6m diameter x 12.5m length (built in 5 modules). ### The Silicon Tracker. ### The Electromagnetic Calorimeter ECAL #### Characteristics of PbWO₄ $X_0 = 0.89$ cm $\rho=8.28 g/cm^3$ $R_{\rm M}$ (Molière radius) = 2.2cm | Parameter | Barrel | Endcaps | |-------------------------|--------------------|-----------------------------------| | Coverage | η <1.48 | 1.48< η <3.0 | | Δφ 🗴 Δη | 0.0175 x
0.0175 | 0.0175 x 0.0175 to
0.05 x 0.05 | | Depth in X ₀ | 25.8 | 24.7 | | # of crystals | 61200 | 14648 | | Volume | 8.14m ³ | 2.7m ³ | | Xtal mass (t) | 67.4 | 22.0 | ### The hadron calorimeter HCAL CMS HCAL is constructed in 3 parts: Barrel HCAL (HB) Brass plates interleaved wit plastic scintillator embedded with wavelength-shifting optical fibres (photo top right) Forward HCAL (HF) Steel wedges stuffed with quartz fibres ~10000 channels total ### **HB** and **HE** ### **Muon Detectors** ### CMS trigger system Schematic representation of the trigger system Racks and crates in SC housing FEE and trigger system ## 8 years ago. ## Lowering of YE1 and HB ### The heart of CMS lands safely (Feb07) ### Installation of the services ### Installation of the tracker ### It took 16 years to put everything together ## September 08: CMS is ready ### Different particles passing CMS experiment # 1 billion cosmics were recorded to study the most subtle features of our detector November/December 2009 first LHC collisions (0.9 and 2.36 TeV) ### Reconstructed particles using CMS detector ### Reconstructed particles using CMS detector Ξ_b particle Upsilon particles - Y(1S,2S and 3S) #### The new, heavy particle with mass around 125 GeV