Influence of proton bunch and plasma parameters on the AWAKE experiment

Mariana Moreira

Advisor: Jorge Vieira

GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon, Portugal

epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

The PIC method

Question I:

Robustness in the AWAKE experiment

Question 2:

Beyond the linear theory of the SMI

Question 3:

Antiprotons as wakefield drivers

Conclusion

Mariana Moreira | AWAKE group meeting | February 19, 2018

Asymmetry between opposite charges

- most PWFA experiments have used electrons as drivers
- positrons seem to be less efficient as drivers*
- linear wakefield theory is perfectly symmetrical for opposite charges

Third question

How would the hypothetical substitution of the driver protons by antiprotons change the AWAKE experiment?

An antiproton driver brings several benefits

Field configuration recaptures off-axis charge

Why is so much antiproton charge retained?

TÉCNICO LISBOA

ſſ

Energy contained in Er offers important clues

Why is so much antiproton charge retained?

Antiprotons have more energy available for focusing

TÉCNICO

ſĴ

Energy contained in Er offers important clues

Why is so much antiproton charge retained?

Antiprotons have more energy available for focusing

The antiproton-driven wakefield is more nonlinear

- 2D Fourier transform of E_z
- purely linear wake:

 $k_z = \pm k_p$

Charge density in longitudinal and transverse force plane

- normalized, unsigned forces:
 - $W_z = E_z \qquad \qquad W_r = E_r B_\varphi$
- each increment of charge is deposited in W_r/W_z plane according to the fields acting on it

TÉCNICO

Bunch-plasma energy transfer provides no answer

Why is the amplitude of the antiproton wakefield lower than expected?

Charge density in longitudinal and transverse force plane

• normalized, unsigned forces:

$$W_z = E_z \qquad \qquad W_r = E_r - B_\varphi$$

- each increment of charge is deposited in W_r/W_z plane according to the fields acting on it

TECNICO

A lower portion of the remaining antiprotons gives up energy

Benefits are also reflected on witness electrons

A witness electron bunch is introduced in the simulation

The PIC method

Question I:

Robustness in the AWAKE experiment

Question 2:

Beyond the linear theory of the SMI

Question 3:

Antiprotons as wakefield drivers

Conclusion

Mariana Moreira | AWAKE group meeting | February 19, 2018

Deterministic injection of electrons is possible for AWAKE

The outputs from the experiment are robust against shot-to-shot fluctuations

The temporal decline of the wakefield amplitude is due to charge loss

The spatial decline is due to incoherent interference between individual wake contributions A parallel program was developed to study the nonlinear phase of the SMI

Antiprotons are more efficient as wakefield drivers

The wakefield driven by antiprotons is more nonlinear than the one driven by protons More antiproton charge is preserved due to stronger fields