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In a bottom-up approach

• One of the big pictures that we want 
to understand is the origin of the 
EWSB.

• The Higgs potential provides a 
backbone to access to the EWSB.

• And so far only the first term has 
been probed in a bottom-up approach.

Motivation
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way up to the planck scale, then        suffers 
for a radiative instability.
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Motivation

• Historically, this fine-tuning problem has 
been thought of as a key corridor to 
understand the next layer of new physics.

• Vector-like top partners (T ) are postulated 
to exist on course to solve the problem (e.g. 
composite Higgs and Little Higgs models).

m2
h



Current direct searches for T

CMS PAS B2G-16-002 CMS PAS B2G-15-008

• Typically the T can be produced in pair or in single.

• The vertex responsible to create T in pair is the strong coupling.

• The single production is induced by EW coupings.

• Searches are restricted to T decays to tZ, th and bW.



Current Bounds on T
ATLAS, arXiv:1707.03347
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• Recent bounds on T from the pair and single productions.
• The bounds keep increasing every year.

mT & 1.3 TeV

TT ! W+bW�b̄ ATLAS-CONF-2016-072T ! W+b

mT > 1 ⇠ 1.8 TeV

• A considerable amount of searches are still going on for various T decays 
to tZ, th and bW.



Absolutely nothing
SAM & DAVE DIG A HOLE 
 [Mac Barnett & Jon Klassen]

Experimentalists

Theorists?

• But, we found absolutely nothing in 
standard channels.

• What are we going to do about it?

• How are we going to make a progress 
to understand the next layer of physics?

• Maybe our ideas do not apprear to be 
the way that a nature works.



Exotic Productions & Decays
SAM & DAVE DIG A HOLE,  Mac Barnett & Jon Klassen

• The null results leaves open possibilities, 
since T can be hiding in exotic places.

• All of these new questions will chart new 
phenomenologies for T .

• Maybe there are new production 
channels we haven’t searched for.

• Maybe there are new decay modes we 
haven’t considered.



A minimal Lagrangian

• Allowing T to mix with a top quark.

LNP = T̄ i /DT �m2T̄ T +
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• We consider a simplified Lagrangian with a SU(2)L singlet T and an 
additional gauge singlet scalar S.

• A minimal set of interactions we identify consists of :



Working in the mass eigenbasis
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• The S and Higgs can mix as well, but for simplicity we will not 
introduce a mixing angle for the scalar sector.

MD =


mt 0
0 mT

�

mT mS

• In this simplified model, we have 5 independent parameters.

• The amount of mixing is dictated by sin 𝜃L after diagonalizing the 
mass matrix.



Exotic T decays

T
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• The scalar S mediates loop-
level decays of T :External self-energies

W and Z bosons loops

Goldstone bosons loops

Counter terms

• These decays are allowed 
when sin 𝜃L = 0, because we 
can freely dial up and down 
the couplings         .

T ! t g
T ! t �

External self-energies

W and Z bosons loops

Goldstone bosons loops

Counter terms
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t

γ/Z

h/S

t/T
t/T
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J. H. Kim, I. M. Lewis [2018]
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If mT > mS +mt

• If the scalar mass is light, 
there is a new tree-level 
decay of T :

T ! t S

⇠ �1,2

�1,2
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Classic T decay modes

External self-energies

W and Z bosons loops

Goldstone bosons loops

Counter terms

Z

T

b

W+

T

t

h

• All classic tree-level decay modes are controlled 
by sin 𝜃L .

0 (as sin ✓L ! 0)

• They all vanish in the limit of sin 𝜃L → 0.

(survives in the zero-mixing limit)

• Except for the loop-level decay T → t Z .

J. H. Kim, I. M. Lewis [2018]
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• When T is heavier than S.

• The classic decay modes can be match-fit only if the mixing angle is 
sizeable.

• T→ t S decay is nearly 100% in the small mixing regime (sin 𝜃L  < 0.01), 
since other classic tree-level decay modes simply vanish.
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J. H. Kim, I. M. Lewis [2018]

Branching ratios (mT > mS + mt)
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BR(T ! t�) ⇠ 3%

BR(T ! tZ) ⇠ 1%

BR(T ! tg) ⇠ 96%

• When T is lighter than S.

• In the zero-mixing limit, all classic decays are suppressed & vanishing.
• All loop decays T→ t g , T→ t 𝛾 , T→ t 𝛧 dominate.

Branching ratios (mT > mS + mt)
J. H. Kim, I. M. Lewis [2018]

• This strongly indicate that T phenomenology will substantially change.
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Loop-induced T t productions

• The scalar S can mediate loop-induced  g g → T t productions.

External self-energies

W and Z bosons loops

Goldstone bosons loops

Counter terms

J. H. Kim, I. M. Lewis [2018]

T

t

h/S

t/T

t/T

t/T

T

q
t

q
h/S

t/T

t/T

...

• There are also loop-induced                  productions.q q̄ ! T t

• Even they are loop-suppressed, we can freely dial up and down the 
couplings          to control a total cross section.�1,2

⇠ �1,2



Production cross sections
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[pb]

QCD pair
Tt+ tT

EW single
mS = 200 GeV

�1 = �2 = 3

sin ✓L = 0.15TW �
+ TW +

T

b

W −T

• The EW single T production dominates if the mixing angle is large.

• The loop-induced T t productions stay way below.

• Production cross 
sections as a 
function of T mass.

p
s = 14 TeV
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• But the tide changes in the small-mixing regime where the EW single 
T production loses its dominance.

• The loop-induced T t productions become more important.

sin ✓L ⇠

p
s = 14 TeV



T searches in the                 channel

t̄
W�

b̄ ⌫̄
l�

• T decays to t S nearly 100 % in the 
zero mixing case (sin 𝜃L = 0).

• S exclusively decays into gg 
nearly 100 %

sin ✓L = 0

J. H. Kim, I. M. Lewis [2018]
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mS = 110 GeV

• Both tops decay semi-leptonically.

g

g

T

T

T

S

• The production vertex includes all 
loop contributions.

T

p
s = 14 TeV

• Now we talk about a sensitivity of 
the T t production at the LHC.W+

b



What’s in the loops?
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• When mTt ~ 2mT, the internal 
top partners in the loop can go 
on-shell.
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p
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• It gives rise to the peaks in 
mTt  distributions.

mTt

mTt ⇠ 3 TeVmTt ⇠ 4 TeV

J. H. Kim, I. M. Lewis [2018]

• It can significantly alter the 
final state kinematic 
distributions (e.g        ,       …)pT �R



Nsig = 1.7
(for L = 3 ab

�1
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Summary cut-flow table

• 5σ significance is achievable for a luminosity of 3 ab-1  .

m
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Table 1:

SignificanceBackgrounds

�1,2 = 2
mT = 1.5 TeV

5.8% 0.08% 0.06% 0.0036% 0.0028%

• A cut-flow table showing cross sections of each stage in fb.
• It shows that jet substructure analysis can effectively reduce the 

overall size of backgrounds.
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Constraint from the scalar

resonant search

p
s = 14 TeV

L = 3 ab�1 mS = 110 GeV

mT = 1.5 TeV sin ✓L = 0

• Significances are calculated 
for a luminosity of 3 ab-1.

• We have a good fraction of 
parameter space that can be 
probed by the collider search.

> 5� observation

> 2� observation

J. H. Kim, I. M. Lewis [2018]



> 1� observation
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Contours of constant significance
mT = 2.0 TeV

Constraint from the scalar

resonant search

• We might need a high energy 
collider with a decent amount 
of luminosity.

p
s = 14 TeV

L = 3 ab�1 mS = 110 GeV

sin ✓L = 0

• Probing top partner masses 
beyond 2 TeV will be 
challenging.

J. H. Kim, I. M. Lewis [2018]



Summary
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Thank you for listening!

New decays New productions
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The SM fine tuning problem.

�m2
higgs = � |�|2

8⇡2
⇤2 + finitem2

higgs = m2
bare +�m2

higgs

• We should expect to see new 
physics in the scope of the 
naturalness paradigm.

O(1038)�O(1038) ⇠ 104 !?
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e.g. Composite Higgs models

• e.g. In composite Higgs models, the Higgs 
potential is radiatively generated by a top 
and T´ loops.

V (h) = ↵ cos

h

f
� � sin
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• The role of T´ is to cut off the quadratic 
divergence to the Higgs mass in the loop.
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K. Agashe, R. Contino, A. Pomarol [2005]



How Composite Higgs Models 
address the hierarchy problem.

• The Higgs potential is radiatively generated by 
the top quark loop in the SM 

• Λf ~ 1TeV gives a mild tuning ▵≃ 10
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mass scale of resonances



The scalar resonance  
production and decays
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sin ✓L ⇠ T

Limits on the mixing angle
ATLAS-CONF-2016-072

• The strongest limits are obtained by oblique parameters.

Chien-Yi Chen, S. Dawson, 
I. M. Lewis [2014]

J. A. A. Saavedra, R. Benbrik, S. 
Heinemeyer, M. P. Victoria [2013]

• Collider bounds are weak.

sin ✓L < 0.11 ⇠ 0.16 (for mT < 1 ⇠ 2 TeV)

H. J. He, N. Polonsky, S.F. Su [2001]
S. Dawson, E. Furlan [2012]

sin ✓L < 0.3 ⇠ 0.65

(for mT < 1 ⇠ 1.6 TeV)

p
s = 13 TeV 3.2 fb�1 singlet T

mT [GeV]

by oblique

parameters



• S can decay into 𝛾𝛾, 𝑔𝑔, 𝛾𝛧 and 𝛧𝛧 
in the sin 𝜃L → 0 limit.
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CMS-PAS-HIG-17-013

• Scalar resonant searches can  put 
significant constraints on      and      .
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S
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T

g
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mS

• Diphoton searches set the most 
stringent limit on S.

high mass region



• S can decay into 𝛾𝛾, 𝑔𝑔, 𝛾𝛧 and 𝛧𝛧 
in the sin 𝜃L → 0 limit.

Constraints on the Scalar S
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ATLAS collab. [1707.04147]

• Scalar resonant searches can  put 
significant constraints on      and      .
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• At higher top partner masses, the T t productions are kinematically 
favorable, and can easily beat the QCD pair production in much 
wider space.

mT = 2 TeV
J. H. Kim, I. M. Lewis [2018]

p
s = 14 TeV
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• For sin 𝜃L  < 0.04, the T t productions are main production modes.

small mixing

regime
mS = 200 GeV

mT = 1.5 TeV

• Comparisons with the EW single production as a function of sin 𝜃L.

vsT t+ tT EW single

Tt+ tT

T t+ tT

J. H. Kim, I. M. Lewis [2018]
p
s = 14 TeV
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• There is a large parameter space where the T t productions outperform 
the QCD pair production.

J. H. Kim, I. M. Lewis [2018]
p
s = 14 TeV



Signal event generations

• We first generate events based on EFT-type contact interactions using 
MadGraph.

• We reweight the |ℳ |2 of the EFT by |ℳ |2 of the exact loop calculation 
of the theory on an event-by-event basis.

• The reweighted events are showered and hadronized by Pythia.

|MEFT|2

|M
exact

|2
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Diagrams made by MadGraph5_aMC@NLO
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Background simulations
Abbreviations Backgrounds Matching � · BR(fb)

tt tt+ jets 4-flavor 2.91⇥ 10

3
fb

Single t
tW + jets 5-flavor 4.15⇥ 10

3
fb

tq + jets 4-flavor 77.2 fb

W W + jets 5-flavor 4.96⇥ 10

3
fb

V V
WW + jets 4-flavor 111 fb

WZ + jets 4-flavor 43.5 fb

Table 1:

• We performed full background simulations, with generation-level cuts

pT > 30 GeV and |⌘| < 5

p`T > 30 GeV and |⌘`| < 2.5

HT > 700 GeV

(for partons)

(for leptons)

(scalar sum of pT of all partons)

p
s = 14 TeV

dominant

backgrounds



Template Overlap Method (TOM)

• TOM utilises kinematically 
constrained three templates 
within a top fat jet. 

• Template partons are matched to 
jet energy distribution.  

• Once found a good match it gives 
``Ov`` score as an output variable.
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R = 1.0



Template Overlap Method (TOM)
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R = 1.0
• TOM utilises kinematically 

constrained three templates 
within a top fat jet. 

• Template partons are matched to 
jet energy distribution.  

• Once found a good match it gives 
``Ov`` score as an output variable.



Template Overlap Method (TOM)

⌘
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Best-matched 3 templates !
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R = 1.0
• TOM utilises kinematically 

constrained three templates 
within a top fat jet. 

• Template partons are matched to 
jet energy distribution.  

• Once found a good match it gives 
``Ov`` score as an output variable.
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• Reconstructed invariant mass distribution of top-tagged fat jet.

• Reconstructed invariant mass distribution of scalar-tagged fat jet.

detector-level

p
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p
s = 14 TeV detector-level
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V. Barger, T. Han, D. G. E. Walker [2008]

S. Gopalakrishna, T. Han, I. M. Lewis, 
Z. g. Si, Y. F. Zhou [2010]

p⌫L =
1

2 (p`T )
2
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(where A = m2
W + 2~p `

T · ~/ET )
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detector-level

p
s = 14 TeV

• We solve a quadratic equation:

m2
`⌫ = m2

W

• To get two possible solutions for the 
neutrino longitudinal momentum:

• To break the two fold-ambiguity, we 
choose the one which minimizes the 
quantity:

( with p2⌫ = 0 )

Based on
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• Reconstructed invariant mass distribution of T displays a sharp peak.

Reconstructed T and T t-system

• When mTt ~ 2mT, the internal top partners can go on-shell, giving rise 
to the peak in the mTt  distribution. This can be clearly seen even at the 
detector level, helping to suppress the backgrounds.

mS = 110 GeV
mT = 1.5 TeV

mS = 110 GeV
mT = 1.5 TeV



Renormalizing the Lagrangian
• Wave function renormalization constants (w.f.c.) for fermions

• For off-diagonal w.f.c. we use on-shell renormalization conditions:

• For diagonal w.f.c.  use the mass pole and unite residue conditions.



Renormalizing the Lagrangian

• Wave function renormalization constants (w.f.c.) for A and Z  
fields

• Due to mixing, we can’t renormalize the photon and Z boson 
fields separately.
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