

Top-Higgs Interactions

Peter Onyisi

Mitchell Conference, 23 May 2018 (Refugee from the Texas Session)

The Higgs and Fermions

- The Higgs field solves two related but distinct problems
 - how to give the W & Z nonzero masses with gauge-invariant interactions
 - how to give fermions nonzero masses with gauge-invariant interactions
 - not obvious both should be solved in "minimal" SM fashion of single Higgs doublet, e.g. can introduce second doublet with complicated structure of fermion interactions
- Fermion interactions illuminate nature of Higgs sector independently from gauge bosons

The top-Higgs (Hierarchy) problem

- Top quark very heavy → top-Higgs interaction very strong
 - cannot ignore quantum corrections from the top quark to bare Higgs parameters

$$\underbrace{\overset{H}{\to}_{t}} - \underbrace{\overset{H}{\to}_{t}} \qquad \Delta(\mu^2)_{top} = \mathcal{O}(1) \times y_t^2 \Lambda_{cutoff}^2$$

- if Λ_{cutoff} ~ quantum gravity scale \rightarrow correction is 10^{32} times observed value!
- Need extreme cancellation of "bare" parameter and correction
- motivates new physics models which cancel correction, lower Λ_{cutoff} , or both (supersymmetry, extra dimensions, composite Higgs ...)
- Higgs properties enormously affected by top quark interactions

Is our vacuum stable?

- If no BSM before GUT scale: we are on a knife edge between a stable and unstable vacuum
 - Higgs-top quark interactions change effective potential
- LHC can help tell us if the vacuum is metastable
 - top-Higgs Yukawa coupling → top mass & Higgs coupling measurements

APS/Alan Stonebraker

How to measure the Top-Higgs Yukawa Coupling

- Highest rate way: $gg \rightarrow H$ through top loop
- Effects of top are not distinguishable from new physics in gg → H
- A tree-level measurement is possible: pp → ttH
 - multiple search channels based on top, Higgs decay

@ 13 TeV:

ttH Channels

- Look at channels based on top & Higgs boson decays
 - try to choose channels with well-controlled & small backgrounds...

Top Pair Branching Fractions

Multileptonic ttH

Target H → WW, TT, ZZ decays

PRD 97 072003 (2018)

do not attempt to disentangle before fit

Use signatures not reachable in tt decay: 2 same sign leptons,
 3 leptons, 4 leptons [incl. τ]

acceptance × efficiency @ preselection

	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{\rm had}$	$2\ell SS + 1\tau_{had}$	$2\ell \text{OS} + 1\tau_{\text{had}}$	$3\ell + 1\tau_{\rm had}$	Total
$A \times \epsilon \ (\times 10^{-4})$	23	13	0.6+0.1	2.3	1.7	7.8	0.8	50

Cut-Based Cross Checks

Three most powerful categories have cut-based cross checks for MVAs

Compatible with MVA results

Shown: data vs MC using nominal μ and nuisance parameters for 3 ℓ

Exploits:

- higher #jet in signal
- H $\rightarrow \ell v \ell v$ spin correlation (small $\ell \ell$ mass)
- no lepton flavor correlation in signal

Multilepton Channels

ttH Multilepton Results

Multilepton Results

Channel	Best-	Significance		
	Observed	Expected	Observed	Expected
$2\ell OS + 1\tau_{had}$	$1.7^{+1.6}_{-1.5}$ (stat.) $^{+1.4}_{-1.1}$ (syst.)	$1.0^{+1.5}_{-1.4} \text{ (stat.) } ^{+1.2}_{-1.1} \text{ (syst.)}$	0.9σ	0.5σ
$1\ell + 2\tau_{\rm had}$	$-0.6^{+1.1}_{-0.8}$ (stat.) $^{+1.1}_{-1.3}$ (syst.)	$1.0^{+1.1}_{-0.9}$ (stat.) $^{+1.2}_{-1.1}$ (syst.)	_	0.6σ
4ℓ	$-0.5^{+1.3}_{-0.8}$ (stat.) $^{+0.2}_{-0.3}$ (syst.)	$1.0^{+1.7}_{-1.2} \text{ (stat.) } ^{+0.4}_{-0.2} \text{ (syst.)}$	_	0.8σ
$3\ell{+}1\tau_{\rm had}$	$1.6^{+1.7}_{-1.3} \text{ (stat.) } ^{+0.6}_{-0.2} \text{ (syst.)}$	$1.0^{+1.5}_{-1.1} \text{ (stat.) } ^{+0.4}_{-0.2} \text{ (syst.)}$	1.3σ	0.9σ
$2\ell SS + 1\tau_{had}$	$3.5_{-1.2}^{+1.5}$ (stat.) $_{-0.5}^{+0.9}$ (syst.)	$1.0^{+1.1}_{-0.8}$ (stat.) $^{+0.5}_{-0.3}$ (syst.)	3.4σ	1.1σ
3ℓ	$1.8^{+0.6}_{-0.6}$ (stat.) $^{+0.6}_{-0.5}$ (syst.)	$1.0^{+0.6}_{-0.5}$ (stat.) $^{+0.5}_{-0.4}$ (syst.)	2.4σ	1.5σ
$2\ell { m SS}$	$1.5^{+0.4}_{-0.4}$ (stat.) $^{+0.5}_{-0.4}$ (syst.)	$1.0^{+0.4}_{-0.4}$ (stat.) $^{+0.4}_{-0.4}$ (syst.)	2.7σ	1.9σ
Combined	$1.6^{+0.3}_{-0.3}$ (stat.) $^{+0.4}_{-0.3}$ (syst.)	$1.0^{+0.3}_{-0.3}$ (stat.) $^{+0.3}_{-0.3}$ (syst.)	4.1σ	2.8σ

>4σ observed significance for t̄tH from multileptons alone

TT C			
Uncertainty Source	$\Delta \mu$		
$t\bar{t}H$ modeling (cross section)	+0.20	-0.09	
Jet energy scale and resolution	+0.18	-0.15	
Non-prompt light-lepton estimates	+0.15	-0.13	
Jet flavor tagging and $\tau_{\rm had}$ identification	+0.11	-0.09	
$t\bar{t}W$ modeling	+0.10	-0.09	
$t\bar{t}Z$ modeling	+0.08	-0.07	
Other background modeling	+0.08	-0.07	
Luminosity	+0.08	-0.06	
$t\bar{t}H$ modeling (acceptance)	+0.08	-0.04	
Fake $\tau_{\rm had}$ estimates	+0.07	-0.07	
Other experimental uncertainties	+0.05	-0.04	
Simulation sample size	+0.04	-0.04	
Charge misassignment	+0.01	-0.01	
Total systematic uncertainty	+0.39	-0.30	

13 TeV, 36 fb⁻¹

PRD 97 072003 (2018)

ttH combination: see Simone Monzani's talk

Formalism for Couplings

- Allow scale factors K_i for the couplings of the SM $\Gamma(H \to X) = \kappa_X^2 \Gamma(H \to X)_{SM}$
- Invisible or undetected decays have branching fraction $\text{BR}_{\text{i,u}}$ Overall width scales as $\Gamma_H = \frac{\kappa_H^2}{1-\text{BR}_{\text{i,u}}}\Gamma_H^{SM}$ coherently so

coherently scale all κ, increase BR_{i,i}: no effect on observed on-shell µ

Loop-induced couplings either *resolved* (expressed in terms of SM particle κ) or *unresolved* (have their own κ to capture possible new physics)

resolved

unresolved

Example of k-formalism

resolved

unresolved

Rate

Can increase all κ coherently and keep same on-shell μ if increase Γ_{μ} to compensate (invisible/undetected decays)

ttH Couplings Interpretation

ttH can access many couplings simultaneously

- scan
$$\kappa_F \equiv \kappa_t = \kappa_b = \kappa_T$$
 and $\kappa_V \equiv \kappa_W = \kappa_Z$

PRD 97 072003 (2018)

- Sign flip of top Yukawa coupling excluded at > 95% CL
 - needs to resolve $H \rightarrow \gamma \gamma$ loop for full power

ttH channels only

Future: Differential Measurements

- Non-SM operator structures can result in modified Higgs p_T, top spin correlations, ...
 - CP-odd couplings, higher-dim operators...

example:
$$\mathcal{L} \ni -y_t \bar{t}(a+ib\gamma^5)th$$

Boudjema et al., 1501.03157

Top Flavor Changing Neutral Currents

- Top quark FCNC not observable in SM; more complex Higgs sectors may include e.g. top-charm-Higgs couplings
 - would cause the top quark decay $t \rightarrow Hc$
 - any sign of this indicates new physics (more Higgs fields, ...)
 - "Cheng-Sher ansatz": BR(t \rightarrow Hc) ~ 0.15%
- Search for tt production with one top quark decaying by FCNC
 - reinterpret signal regions of multileptonic ttH search

Final states considered:

- → same sign dilepton
- → trilepton

arxiv:1805.03483

Multilepton FCNC Search

- Use BDTs to separate FCNC signal from backgrounds
 - important background of real leptons from b-hadron decays
- FCNC signal contaminates regions used for data-driven non-prompt lepton estimates!
 - tell fit how normalization, shape of non-prompt bkg change with nonzero signal
- Best fit: no FCNC signal, BR ≤ 0.16-0.19%

Summary

- Direct searches for SM-like top-Higgs Yukawa coupling finally reaching high sensitivity
 - multilepton channels play a key role
- Search for off-flavor-diagonal top-Higgs couplings now excluding couplings in a phenomenologically interesting range
- More data → reduced statistical uncertainties, better systematic constraints, differential measurements
- Exciting future ahead!

