Hot QCD Matter: An Experimenter's Dream and Nightmare

B. Jacak Stony Brook October 25, 2009

Hot QCD Matter

 Exciting and surprising results from RHIC What IS the coupling in the plasma?
 What are the degrees of freedom - point particles? pure fields? composite quasiparticles?

 What are the physical properties of the plasma? Thermal: T, ρ, EOS opacity, fluidity
 Dynamic: viscosity, diffusion, energy transport color screening, correlations inside

Measure the above in a system lasting <10 fm/c!
 Nature does the time integral, whether we like it or not
 2

Today (results from PHENIX)

Exciting and surprising results from RHIC
What *IS* the coupling in the plasma?
What are the degrees of freedom - point particles? pure fields? composite quasiparticles?

 What are the physical properties of the plasma? Thermal: T, ρ, EOS opacity, fluidity
 Dynamic: viscosity, diffusion, energy transport color screening, correlations inside

Measure the above in a system lasting <10 fm/c! Nature does the time integral, whether we like it or not

Initial State Temperature: direct photons

Low mass, high p_T e⁺e⁻ → nearly real photons Large enhancement above p+p in the thermal region

Lepton pair emission \leftrightarrow **EM correlator**

From emission rate of dilepton, the medium effect on the EM correlator as we temperature of the medium can be decoded.

Yasuyuki Akiba - PHENIX QM09

Relation of dileptons and virtual photons

Virtual photon emission rate can be determined from dilepton emission rate

 $q_0 \frac{dn_{\gamma^*}}{d^3 q} \simeq \frac{3\pi}{\alpha} M^2 q_0 \frac{dn_{ll}}{d^3 q dM^2}$ $= \frac{3\pi}{2\alpha} M q_0 \frac{dn_{ll}}{d^3 q dM} M \times d\text{Nee/dM gives}$ Virtual photon yield

For $M \rightarrow 0$, $n_{\gamma}^* \rightarrow n_{\gamma}$ (real) so real photon emission rate can also be determined ⁷

Virtual photon emission rate

Excess of virtual photon

Excess over cocktail ~ constant with mass at high p_T .

Convert to virtual photon yield by 1/M factor from the virtual photon decay. \rightarrow distribution is ~flat over 0.5 GeV/c²

Extrapolation to M=0 should give the real photon emission rate.

No indication of strong modification of EM correlator at high p_T !

presumably the virtual photon emission is dominated by processes e.g. $\pi+\rho \rightarrow \pi+\gamma^*$ or $q+g \rightarrow q+\gamma^*$

Yasuyuki Akiba - PHENIX QM09

How about low p_T?

virtual photon emission rate... Enhancement of EM correlator at low mass, low p_T? <u>NEED HELP FROM THEORY!!</u> NEW DATA COMING IN 2010

10

Interactions within the plasma

• Experimentalist's simple minded picture

Strong coupling = interactions among multiple neighbors

 Of course this must cause correlations within plasma also increases opacity

how is the energy loss mechanism affected? is the quark gluon plasma "black"?

Iconic jet quenching (opacity) result

Au+Au √s_{NN} = 200GeV, 0-10% 0.6 PHENIX πº (Au+Au 0-5% Central) 1.6 Global Systematic Uncertainty ± 12% PHENIX preliminary **PH***ENIX 0.5 •– π⁰ 1.4 📥 ŋ 1.2 -dir. photon 0.4 0.3 0.8 0.6 0.2 0.4 0.1 0.2 °ò 9 10 12 18 2 16 18 20 8 16 20 10 12 14 2 6 14 6 8 pT(GeV/c) p_(GeV/c) ^{R₄₄} [b⁻=20 (Ge//*c*)] 0.4 0.4 0.3 QuickTime[™] and a 0.3 decompressor are needed to see this picture. 0.2 0.1 12 **0**L 20 40 60

PQM Model (q) (GeV²/fm)

Insights somewhat unsatisfying

QuickTime[™] and a decompressor are needed to see this picture. S. Bass, et al. Phys.Rev.C79:024901,2009

Put 3 different energy loss schemes into common, realistic hydrodynamic calculation

QuickTime[™] and a decompressor are needed to see this picture.

We can do better!

- Extend the p_T range Difficult for π⁰ because decay γ's merge in the calorimeter
- <u>Measuring η instead of</u> <u> π^{0} is the solution</u>
- <u>R_{AA} remains flat</u> to at least 22 GeV/c!

Next step: constrain geometry: high-p_T v₂

Out-of-plane vs. in-plane

Differentiate among energy loss models!

More differential yet: dijet reaction plane dependence

Away side yield

19

Shocks? Medium spectrum

Jet-medium interaction

γ-jet (γ-h) correlation: calibrated probe

fragmentation of y tagged jets in/out of medium

p+p slope: 6.89 ± 0.64 Au+Au slope: 9.49 ± 1.37

Challenge: understand energy transfer to/from the medium! Coupling properties...

Next step: full jet reconstruction

Gaussian filter algorithm

optimize signal/background by focusing on jet core stabilizes jet axis in presence of background

QuickTime™ and a decompressor are needed to see this picture.

σ

QuickTime[™] and a decompressor are needed to see this picture.

In ion collisions life is tougher

signal

background

QuickTime™ and a decompressor are needed to see this picture.

In Cu+Cu

 π

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

 σ

Yikes! R_{AA} flat to > 30 GeV/c p_T

Heavy quark energy loss (large!)

Who ordered that? Mix of radiation + collisions (diffusion) but collisions with what? AdS/CFT provides an answer, but...

Not all energy loss is created equal!

High $m_{eff} \rightarrow$ **large collisional energy loss**

Fig. 3. The heavy-to-light ratio $\Delta E_Q/\Delta E_q$ of collisional energy loss for charm quarks (upper panel) and bottom quarks (lower panel), compared to that of light quarks ($m_q = 200$ MeV). The results for the numerator ΔE_Q and the denominator ΔE_q are the same as used for plotting Fig. 2.

Upgrades over next ~3 years

PHENIX Upgrades

 $\frac{\text{Forward Calorimeter}}{\gamma, \pi^0 \text{ at } \eta = 1-3}$ Correlate with mid-y h[±]

Silicon VTX, FVTX Tag displaced vertex for heavy quark decays Track charged hadrons in large acceptance

*In addition to RHIC-II luminosity upgrade x8

Over next decade: entirely new questions

- Precision jet probes of energy transport in medium What degrees of freedom? Heavy quark fragmentation modified? Theory + dynamics: qualitative → quantitative
- What is the screening length in strongly coupled QCD matter?

Experiment: onium spectroscopy in pp, dAu, AuAu Theory: understand production & cold matter effects

Supplement silicon tracker to enhance momentum resolution Enhance electron ID capabilities inner barrel compact calorimeter?

Conclusion:

- It could be that theorists' dreams make for the experimenters' nightmares...
 The really interesting stuff is hard to measure
- Experimenters' dream results are *definitely* the stuff of the theorists' nightmares
 We really want to pin you down
 Extract properties of hot QCD matter by constraining theory + phenomenology with data!
- But for Al we wish very sweet dreams! We'll work hard for those sugarplums

HAPPY BIRTHDAY

• backup slides

Tag jet energy with direct photon

black core γ -h I_{AA} \approx h R_{AA}

penetrating γ-h probes a different set of path lengths through the medium than either h or h-h suppression

the direct γ better constrains the parton energy

Black Core / Corona vs. Diffuse Medium

Local Slopes of Inclusive m_T Spectra

Soft component below $m_T \sim 500$ MeV: $T_{eff} < 120 MeV$ independent of mass more than 50% of yield

34 Axel Drees

Open Heavy Flavor

Mike Leitch - PHENIX QM09

b quarks and medium effects...

Nuclear Effects

Should modify low p_T direct γ yield \rightarrow Evaluate using d+Au data.

Systematic errors on Run3 d+Au results are still large. □At 2-3 GeV/c, data looks in agreement with pQCD calculation. \rightarrow No modification of direct γ yield by nuclear effects? **Run 8 analysis** underway: x30 statistics

Both ridge & shoulder yields grow

QuickTime[™] and a decompressor are needed to see this picture.

Away/near to ~ cancel acceptance

QuickTime[™] and a decompressor are needed to see this picture.

Shoulder and ridge have the same physics!

See also Rudy Hwa, Jiangyong Jia recent talks

From the bulk or jet-like?

Compressional and shear wakes in a two-dimensional dusty plasma crystal

FIG. 4. The compressional- and shear-wave Mach cones, excited simultaneously. The scanning speed U is higher than the sound speed for both the compressional and shear waves. Maps are shown for (a) particle velocity v, (b) vorticity $|\nabla \times v|$, and (c) $\partial n/\partial t$, where n is the particle areal number density.

QuickTime™ and a decompressor are needed to see this picture.

In the most central collisions

Quantifying the viscosity

Need:

3-d viscous hydro calculations Precision data Mass dependence of v₂

+ other observables for p_T transport

<u>η/s ~ 0 - 0.8</u> *Recall: in ideal hydro* $\lambda_{mfp}=0$ <u>Conjectured η/s bound: 1/4π</u>

Work is underway to control: initial state geometry gluon distribution

$$\eta \sim n \ \overline{p} \ \lambda_{mfp}$$

Dileptons at low mass and high p_T

direct photons via e+e-

low mass and $p_T >> m_{ee}$ dominated by decay of γ^* for low mass, $p_T > 1$ GeV/c direct γ^* fraction of inclusive γ^* (mostly π^0 , η) is \approx real γ fraction of γ (mostly π^0 , η)

Virtual Photon Measurement

D Any source of real γ can emit γ^* with very low mass. **D** Relation between the γ^* yield and real photon yield is known.

Where does the lost energy go?

• Radiated particles still correlated with the jet

 Completely absorbed by plasma Thermalized? Collective conservation of momentum?

 Excites collective response in plasma Shocks or sound waves? Wakes in the plasma?

L

