Forward Physics from RHIC to LHC

Thanks and a plea for guidance

Michael Murray Kansas

Heavy Ions always data driven

"These theories ain't worth a bucket of worm piss"

Elliptic flow V₂(p_T) changes slowly

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Suppression also changes very slowly

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Lots of forward protons at high pT

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Saturation at forward y for d-Au

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

> QuickTimeTM and a TIFF (Uncompressed) decompressor are needed to see this picture.

J/ψ also suppressed in dA

QuickTime[™] and a decompressor are needed to see this picture.

> Looks like limiting fragmentation not x_{nucleus} scaling, Larry yesterday

> > 8

Jet Suppression in dAu

200 GeV *p+p* and *d + Au* Collisions Run8, STAR Preliminary

d+Au (peripheral)

d+Au (central)

Hawking Radiation in "QCD"

QCD gives quarks and gluons a "color" charge related to their strong interactions, Color Confinement causes the physical vacuum to create an "event horizon" like black holes...

 \rightarrow Is a proton a "White Hole"?

1. "Thermal hadronization and Hawking-Unruh radiation in QCD." P. Castorina, D. Kharzeev and H. Satz

Fit π^{\pm} , K[±], p[±] => T, chemical potentials

2. "THERMUS -- A Thermal Model Package for ROOT", S. Wheaton and J. Cleymans, hep-ph/0407174

$$T_Q(B) = T_Q(B=0) \left\{ \frac{4\sqrt{1 - 2\sigma B^2/E^2}}{(1 + \sqrt{1 - 2\sigma B^2/E^2})^2} \right\};$$

1. "Thermal hadronization and Hawking-Unruh radiation in QCD." P. Castorina, D. Kharzeev and H. Satz

First look for white holes

Temperature is dropping, but theory would predict no effect over such a range in (B/E)

$$E_t = \sum_{\pi,k,p} \left\langle m_t \right\rangle \frac{dN}{dy}$$

What happens when energy goes up 28 times?

CASTOR

Muons

ZDC

CASTOR

ZDC

Castor 5.2<η<**6.6**

ZDC η>**8.3**

transverse slice through CMS

Multiplicity/event

Find hits in pixels, using an energy cut. We also have a tracklet analysis.

Low p_T hadrons

Find tracks in pixels and use energy loss vs momentum for particle ID

Finding Jets

- Iterative cone (R>=0.5) with background subtraction:
- calculate average energy and dispersion in tower (in eta rings) for each event
- Subtract average energy and dispersion from each tower
- find jets with a jet finder algorithm (any) using the new tower energies
- recalculate average energy and dispersion using towers free of jets
- recalculate jet energies
- ② Done, but can do more iterations

Space resolution is less then the tower size

Jet fragmention from γ jet events

 $J/\psi \partial \mu^+\mu^-$

For 0.5 nb⁻¹ we reconstruct 180K J/ ψ Signal/Background: ~5 for |η|<0.8, 1 for |η|<2.4

Entries RMS

GeV/c².5

 $\mathbf{26}$

117

0

Photon nucleus

Max photon energy ~ 80 GeV γ +Pb: \sqrt{S} 1. TeV/n γ + γ \sqrt{S} 160 GeV

Summary, Thanks

- Theory is a lot better than in the early days
- Thanks Al but don't stop, we still need you

Some RHIC results

What does this all mean?

"These theories ain't worth a bucket of worm piss" Bill Willis CERN Council 1982

"There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things we know we don't know. But, there are also unknown unknowns. These are things we don't know we don't know." Donald Rumsfeld Washington 2002

What should we concentrate on at LHC?

Long range correlations, early times

STAR

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.