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Introduction
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Lattice QCD
• Regulate using a space-time lattice.
• Evaluate Euclidean Feynman path 

integral numerically.
– Precise non-perturbative formulation.
– Potential numerical errors.

• Evaluate using Monte Carlo 
methods with hybrid molecular 
dynamics + Langevin evolution.
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Lattice methods
• Introduced by Wilson in 1973

• 1st numerical evaluation by Creutz 1979.

• Driven by spectacular technological 

progress:

– VAX 780 (1984)   1 Mflops (106)

– BG/P (2007)        20 Tflops (2 1013)

• Matching algorithmic innovation

– RHMC/Hasenbusch methods (2006)                       

> 10 x speedup

107 x
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Ab initio method ! ?

• In standard theory one can often distinguish:

– 1st principles derivation

– Justification based on familiar examples

– Ad hoc assumption

• Lattice results can be even less transparent

– Stop the simulation when the result looks good?

– Adjust the fitting function to improve χ2 ?

– Change the action to remove visible errors?

• Consumer beware!
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Lattice QCD
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RBC Collaboration
• RBRC

– Yasumichi Aoki
– Tom Blum (Connecticut)
– Saumitra Chowdhury 
– Chris Dawson (Virginia)
– Tomomi Ishikawa
– Taku Izubuchi (BNL)
– Shigemi Ohta (KEK)
– Ran Zhou

• BNL
– Michael Creutz
– Shinji Ejiri 
– Prasad Hegde
– Chulwoo Jung
– Frithjof Karsch
– Swagato Mukherjee
– Chuan Miao
– Peter Petreczky
– Amarjit Soni
– Ruth Van de Water
– Alexander Velytsky
– Oliver Witzel

• Columbia
– Norman Christ
– Michael Endres
– Xiao-Yong Jin
– Changhoan Kim
– Matthew Lightman
– Meifeng Lin (MIT)
– Qi Liu
– Robert Mawhinney
– Hao Peng
– Dwight Renfrew
– Shinji Takeda
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UKQCD Collaboration

• Edinburgh
– Peter Boyle
– Luigi del Debbio
– Alistair Hart
– Chris Kelly
– Tony Kennedy
– Richard Kenway
– Chris Maynard
– Brian Pendleton
– Jan Wennekers
– James Zanotti

• Southampton
– Dirk Brommel
– Jonathan Flynn
– Patrick Fritzsch
– Elaine Goode
– Chris Sachrajda
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Domain Wall Fermions

• 5-D theory with 4-D, 
chiral surface states.

• Typical 5-D extent of 16.
• “Revolution” in the lattice 

treatment of fermions.

DWF Spectrum
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The Ghost of Doubling Problem

• If the Pontryagin index changes, all modes must mix 
between left and right walls.

• Tearing gauge fields implies violating chirality.

• For the Dirac operator, eigenvalues 
are paired except for zero modes:

0
Pairs on left 

and right 
walls

zero 
modes on 

left or 
right walls

λ
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Local chirality violation

Peter Boyle

s

x

y
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Lattice Chiral Symmetry Breaking

• For Ls < ∞ the right and left states can mix.
• Gives “residual” mass, mres, plus higher dimension operators:

• Both mres and cSW decrease rapidly as Ls grows or as g2 0:

Leff D  fD��� C mg C mres  C cSW �
�� F��

mres.Ls/ D c1

e��cLs

Ls

C c2

1

Ls

Standard 5-D states 
with λ ~ lattice cutoff.

Localized 
states created 
by changing 
topology.
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Kaon and Pion Physics

• RBC/UKQCD gauge ensembles:
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Pseudo scalar decay constant
• Calculate fπ on the coarse 1/a = 173 GeV ensemble

• SU(3) x SU(3) ChPT fails for mPS ~ 420 MeV
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Pseudo scalar decay constant
• SU(2) x SU(2) ChPT yields fπ = 124.1 (3.6)(6.9) MeV 

Experiment:        fπ = 130.7(4)

• Discrepancy comes from O(a2) errors?
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Pseudo scalar decay constant
• New results from 1/a = 2.32 GeV ensemble.

• Discover O(a2) error ~ 2-3% !
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Pseudo scalar decay constant
• Now include continuum and NLO SU(2) x SU(2) ChPT

• Now fπ = 122.2 (3.4) MeV
• NLO term ~ 20-30% of LO  NNLO ~ 5-10%?
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Pseudo scalar decay constant
• Dealing with NNLO effects:

• fπ = 122.2 (3.4) 133 (13) MeV
• NNLO (with 15 extra parameters) ill determined for   

220 MeV ≤ mπ ≤ 430 MeV
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Pseudo scalar decay constant

• Smaller quark masses are needed!
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Continuum results
• DWF results from two lattice spacings

– Small, 1-2% , O(a2) errors.
– BK = 0.524(30)  [PRL, 2008] BK = 0.537(19) [preliminary, 2009].
– mud

MS(2 GeV) = 3.47 ±0.10stat ±0.17NRP MeV
– ms

MS(2 GeV) = 94.3 ±3.4stat ±4.5NRP MeV
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“QCD” with many light 
flavors: 2 < Nf ≤ 16.5
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Motivation
• Classification the long-distance behavior of each 

gauge theory with group G and fermion Rep R
provided β(g) < 0 for small g.

• Bank’s–Zaks argument suggests infrared fixed 
point and possible conformal long-distance 
behavior as Nf 16.5.

• Construct “walking technicolor” model with 
sufficiently large confinement scale.

• Reliable results require lattice methods!

• Slowly running coupling large distance scale 
must be explored.
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Recent Work
• Appelquist, Fleming and Neil [PRL 100, 171607 (2008)]

present evidence for a infrared fixed point with 
Nf=12:      lim gSF(L) = g∞.

• Deuzeman, Lombardo, and Pallante [arXiv:0904.4662 
(hep-ph)] conclude that Nf=12 shows conformal 
behavior.

• Recent work by Xiao Yong Jin and Bob Mawhinney: 
Carefully study an array of standard observables:  
chiral condensate, static quark potential, mπ , mρ , fπ
and temperature dependence.

L ∞
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Computational strategy

• Use staggered fermions to reduce cost.

• Recall one single-component staggered field χn 

describes 4 flavors or “tastes” of spin-1/2 particle.

• Using 1, 2 or 3 such fields gives 4, 8 and 12 flavors.

• No rooting but SUL(12) x SUR(12) symmetry is 

broken by O(a2) effects (reduced with DBW2 action). 

• There is an exact SUL(3) x SUR(3) subgroup.
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Recall Nf = 4 and 8
• Both Nf = 4 and 8 show confinement and vacuum chiral 

symmetry breaking of QCD.

• Nf =  8, (Wilson action) has a treacherous bulk transition.

• Requires g2 < gcrit
2 where lattice scale shrinks by 3x .
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Behavior of chiral condensate

• Exact staggered chiral symmetry spontaneously 

broken by < ψ ψ >  ≠ 0
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Behavior of chiral condensate

• Compare Nf = 8 and 12 as β increases.
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Behavior of chiral condensate
• Scale change from strong to weak coupling:

– Nf =   8:    fπ falls   2x,   mρ falls   2x
– Nf = 12:    fπ falls 10x,   mρ falls   6x
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Is there a Goldstone pion?
• mπ small but non-zero

• Goldstone finite volume sensitivity

• Nf=12 shows familiar QCD-like behavior!
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Lattice Field Theory

• Hard when you don’t know the answer in 
advance!

• Very much a theorist’s subject: refined 
command of field theory and phenomenology 
required.

• Objectivity and care of experimental work 
absolutely required: opportunities for self-
delusion are rampant.
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A new direction for Al!
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A lattice test of strong coupling behaviour in QCD at finite

temperature

E. Iancu

Institut de Physique Théorique de Saclay, F-91191 Gif-sur-Yvette, France

E-mail: Edmond.Iancu@cea.fr

A. H. Mueller

Department of Physics, Columbia University, New York, NY 10027, USA

E-mail: amh@phys.columbia.edu

Abstract: We propose a set of lattice measurements which could test whether the decon-
fined, quark–gluon plasma, phase of QCD shows strong coupling aspects at temperatures
a few times the critical temperature for deconfinement, in the region where the conformal
anomaly becomes unimportant. The measurements refer to twist–two operators which are
not protected by symmetries and which in a strong–coupling scenario would develop large,
negative, anomalous dimensions, resulting in a strong suppression of the respective lattice
expectation values in the continuum limit. Special emphasis is put on the respective opera-
tor with lowest spin (the spin–2 operator orthogonal to the energy–momentum tensor within
the renormalization flow) and on the case of quenched QCD, where this operator is known
for arbitrary values of the coupling: this is the quark energy–momentum tensor. The pro-
posed lattice measurements could also test whether the plasma constituents are pointlike (as
expected at weak coupling), or not.


