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In QCD/QED vanishing of  forward inelastic processes follows from gauge invariance.
In a more general context, it is due to orthogonality of  the initial and final state wave 
functions, provided the initial and final systems interact identically with “the probe”. 
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⊥
− (k − q)⊥

(k − q)2⊥

]2

K(k, q) =

“Lipatov vertex”
∂φ(y, q)

∂y
=

αsNc

π2

∫
d2k K(q, k) φ(y, k)

rapidity-independent kernel !

Rapidity evolution of  unintegrated parton density   (BFKL)

Once again, quantum-mechanical coherence at work. How has it happened?

q

k

Inelastic dissociation. Into a compact state 

In a long-range potential 

: ∆ρ⊥ ∼ k−1
⊥

: λ⊥ ∼ q−1
⊥ " ∆ρ⊥

0

In QCD/QED vanishing of  forward inelastic processes follows from gauge invariance.
In a more general context, it is due to orthogonality of  the initial and final state wave 
functions, provided the initial and final systems interact identically with “the probe”. 

βq

q2
⊥
! βk

k2
⊥

t[q] ! ! t[k]
By hook or by crook, the “kinematical” fluctuation time ordering
seems to be of  little relevance as it misses essential physics. 
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of  emission of  1, 2, 3 soft gluons.

Known consequence - Malaza puzzle :

derivation of  the N-N-LL correction
to the ratio of  quark and gluon jet 
multiplicities (Gaffney & AHM, 85)
from the 1-loop AO evolution eq.
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