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Jets in QCD
Observation of jets in 1975 has provided one of the most striking confirmations of QCD

A three-jet event

Average angular distribution of two jets
reflecting fermionic degrees of freedom (quarks)
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The inclusive spectrum

Cross section to produce one hadron plus anything else
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Evolution equation

The fragmentation function satisfies a DGLAP-type equation
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Timelike anomalous dimension

Lowest order perturbation

Soft singularity
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Inclusive spectrum
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Double logs + QCD coherence.  Structure of jets well understood in pQCD.

Mueller (1981)
Ermolaev, Fadin (1981)
Dokshitzer, Fadin, Khoze (1982)



e+e- annihilation in N=4 SYM 
at strong coupling 

Hofman & Maldacena, 0803.1467;  YH, Iancu & Mueller, 0803.2481;  
YH & Matsuo, 0804.4733, 0807.0098;  YH, 0810.0889.                                        

Possible phenomenological application at the LHC ? Strassler (2008)

“Fifth dimension”

Calorimeters here

The AdS/CFT dictionary doesn’t tell you how to 
compute the timelike anomalous dimension ! 



DIS vs. e+e- : crossing symmetry 
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Gribov-Lipatov reciprocity 
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An intriguing relation in DLA Mueller (1983)

Dokshitzer, Marchesini, Salam (2005)

The two anomalous dimensions derive from a single function

Nontrivial check up to three loops (!) in QCD Mitov, Moch, Vogt (2006)



Average multiplicity
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Jets at strong coupling?

The inclusive distribution is peaked at the kinematic lower limit
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At strong coupling, branching is so fast and complete. 
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Thermal hadron production

Identified particle yields are well described by a thermal model
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The model works in e+e- annihilation, 
hadron collisions, and heavy-ion collisions

Becattini (1996)
Chliapnikov,
Braun-Munzinger et al.

Hadronization not understood in perturbation theory.
Need nonperturbative arguments, e.g., Kharzeev et al. (2007) 



Thermal hadron production at RHIC

Charged hadrons in pp at 200 GeV

Multiplicity ratios in AA



A statistical model
Bjorken and Brodsky (1970)

Cross section to produce exactly                            ‘pions’

Assume

Then



Thermal distribution from gauge/string duality

5D hadron w.f. 5D photon

string amplitude

Polchinski, Strassler (2001)

When                         and

YH, Matsuo (2008)

When amplitude dominated by 

Dimensional counting rule by Brodsky, Farrar (1973)

Saddle point at 

Thermal !



Away-from-jets region

Gluons emitted at large angle,
insensitive to the collinear singularity

Resum only the soft logarithms 

( )ns x1lnα

There are two types of logarithms.

Sudakov logs. (emission from primary partons)
Kidonakis, Oderda, Sterman (1997) 

Non-global logs. (emission from secondary gluons)
Dasgupta, Salam (2001)



Marchesini-Mueller equation 

Differential probability for the soft gluon emission

Marchesini, Mueller (2003)

k
bpap

large Nc

k
bpap

Evolution of the interjet gluon number. Non-global logs included.



BFKL equation
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Dipole version of the BFKL equation     Mueller (1995)



BFKL dynamics in jets
The two equations become formally identical after the small angle approximation

The interjet soft gluon number grows like the BFKL Pomeron !

Question : Is this just a coincidence, or is there any deep relationship
between the two processes ? 

Hint from AdS/CFT



Two Poincaré coordinates

5AdS as a hypersurface in 6D
Cornalba (2007)

Introduce two Poincaré coordinate systems

Poincaré 1 :

Poincaré 2 :

Our universe

Related via a conformal 
transformation on the boundary



The sphere      can be mapped onto the transverse plane      of Poincare 2 
via the stereographic projection

Shock wave picture of e+e- annihilation

angular distribution of energy 

Ω

YH (2008)

Treat the photon as a shock wave in Poincare 2

Boundary energy from the 
holographic renormalization

Hofman, Maldacena (2008)



Shock wave picture of a high energy “hadron”

A color singlet state lives in the bulk. 
At high energy, it is a shock wave in Poincare 1.

Energy distribution on the boundary transverse plane

Gubser, Pufu & Yarom (2008)



The stereographic map

x
r

High energy, Regge

Ωe+e- annihilation
Exact mapping between the 
final state in e+e- annihilation
and the high energy hadronic 
wavefunction.

The two processes are mathematically identical. The only difference is the choice 
of the coordinate system in which to express its physics content.



Exact map at weak coupling

The same stereographic map transforms BFKL into the Marchesini-Mueller equation

k-gluon emission probability

Make the most of conformal symmetry SL(2,C) of the BFKL kernel.
Exact solution to the Marchesini—Mueller equation  YH (2008)
and much more !   Avsar, YH, Matsuo (2009)



The issue of the evolution ‘time’

Timelike gluon cascade à ordered in the transverse momentum, 
the angle is more or less constant.

Spacelike gluon cascade à ordered in angle, the transverse momentum 

The evolution time

Spacelike gluon cascade à ordered in angle, the transverse momentum 
is more or less constant.

The evolution time

Obstacle to the equivalence? NO !
The stereographic projection is clever enough. Avsar, YH, Matsuo (2009)



NLL timelike dipole evolution 
in N=4 SYM

Apply the stereographic projection to the result by Balitsky & Chirilli (2008).

Stereographic projection works both in the weak and strong coupling limits

and Valid to all orders?



Energy flow as a jet identifier
YH & Ueda, 0909.0056 

Want to discriminate highly boosted (                    )
weak-boson jets from the QCD background.

Agashe, Gopalakrishna, Han, Huang, Soni (2008)
Almeida, Lee, Perez, Sterman, Sung, Virzi (2008) 

Quantify the amount of energy radiated 

SL(2,C) conformal symmetry broken down to
a subgroup SU(1,1).

Quantify the amount of energy radiated 
outside the jet cone in the two cases.
Less energy in the weak-jet case due to 
the QCD coherence.

Jet cone = Poincare disk



Summary

• Timelike anomalous dimension and 
multiplicity computed in strongly coupled 
N=4 SYM. Hadron spectrum thermal.

• Exact map between the final state in e+e-
and hadron w.f. in the transverse plane. 
Works both at weak and strong coupling.


