Gluon and dipole cascades on the light-front

Anna Stasto Penn State & RIKEN BNL

Work done in collaboration with Leszek Motyka, Phys. Rev. D 79, 085016 (2009); arXiv:0901.4949

1

Alfred Mueller's birthday workshop, Columbia University, October 23, 2009

Outline

Motivation: better kinematics in gluon(dipole) cascades. Modified kernel for dipole evolution at small x.

Light-front wave-functions and gluon fragmentation with exact kinematics.

Relation with the maximally helicity violating (MHV) amplitudes.

SOFT GLUONS IN THE INFINITE MOMENTUM WAVEFUNCTION AND THE BFKL POMERON¹

A.H. Mueller Stanford Linear Accelerator Center

Stanford, California 94309

and

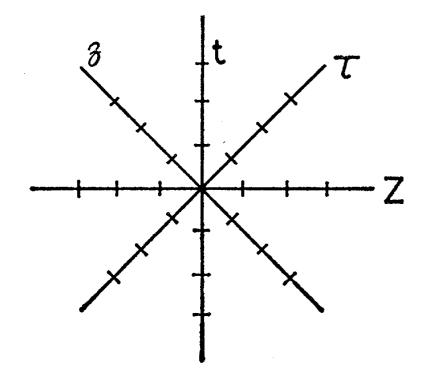
Department of Physics, Columbia University² New York, New York 10027

We construct the infinite momentum wavefunction for arbitrary numbers of soft gluons in a heavy quark-antiquark, onium, state. The soft gluon part of the wavefunction is constructed exactly within the leading logarithmic and large N_c limits. The BFKL pomeron emerges when gluon number densities are evaluated.

Light-front formalism

Dirac

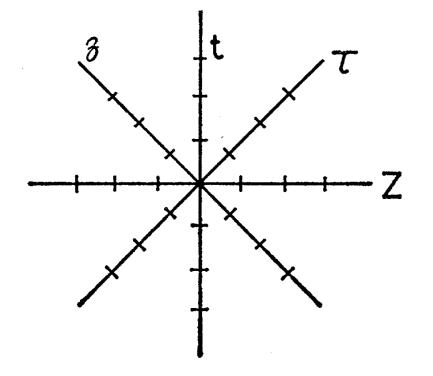
possibly avoid the negative energies



Light-front formalism

Dirac

possibly avoid the negative energies



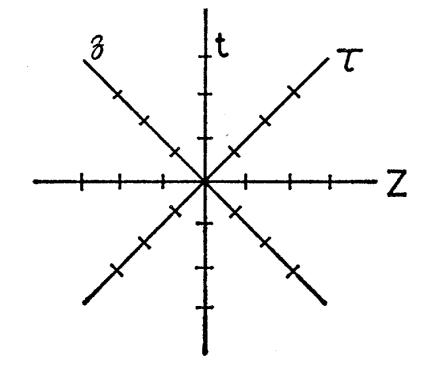
Kogut,Soper

Infinite momentum frame: a limit of a Lorentz frame moving in the -z direction with a (nearly) the speed of light.

Light-front formalism

Dirac

possibly avoid the negative energies



Kogut,Soper

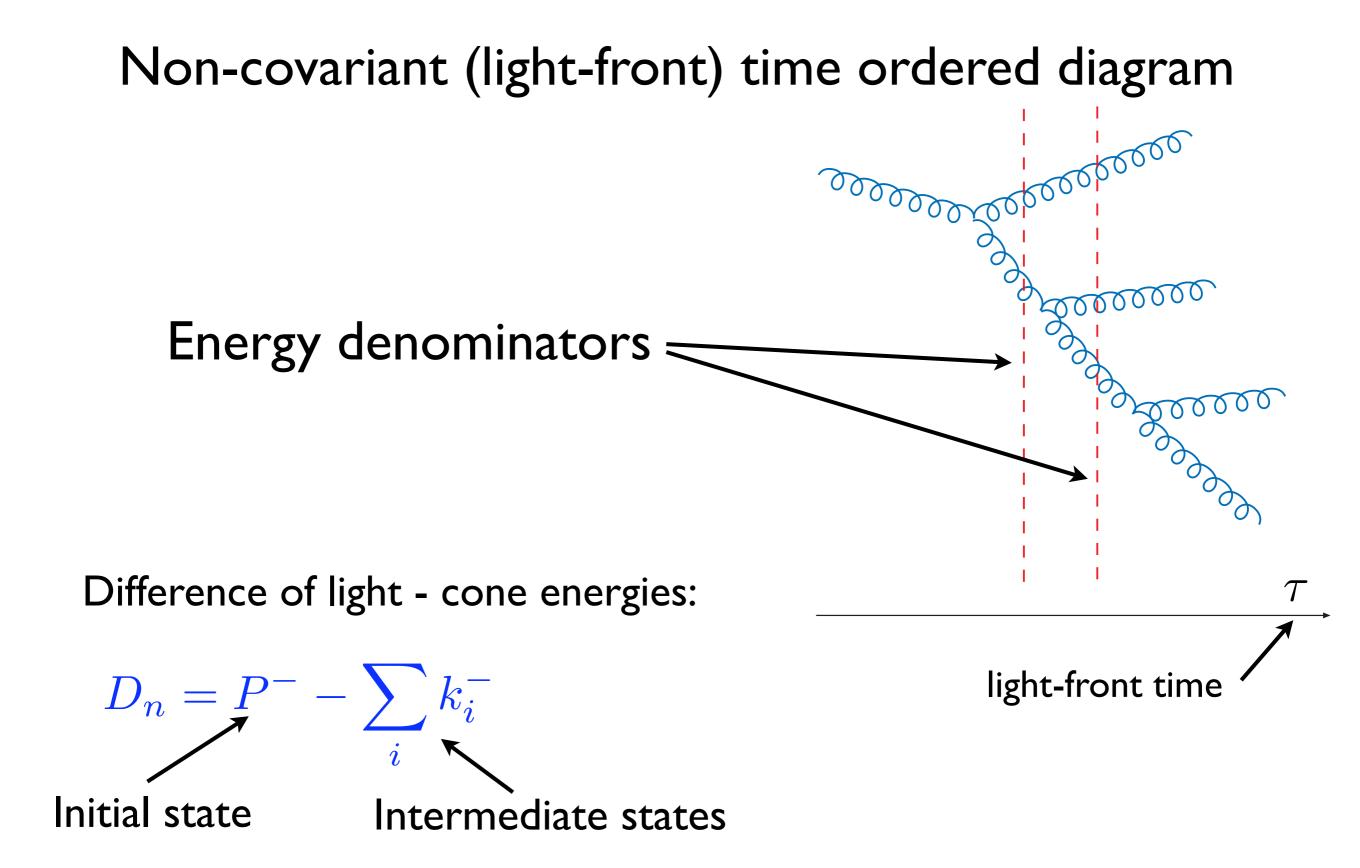
Infinite momentum frame: a limit of a Lorentz frame moving in the -z direction with a (nearly) the speed of light.

Susskind

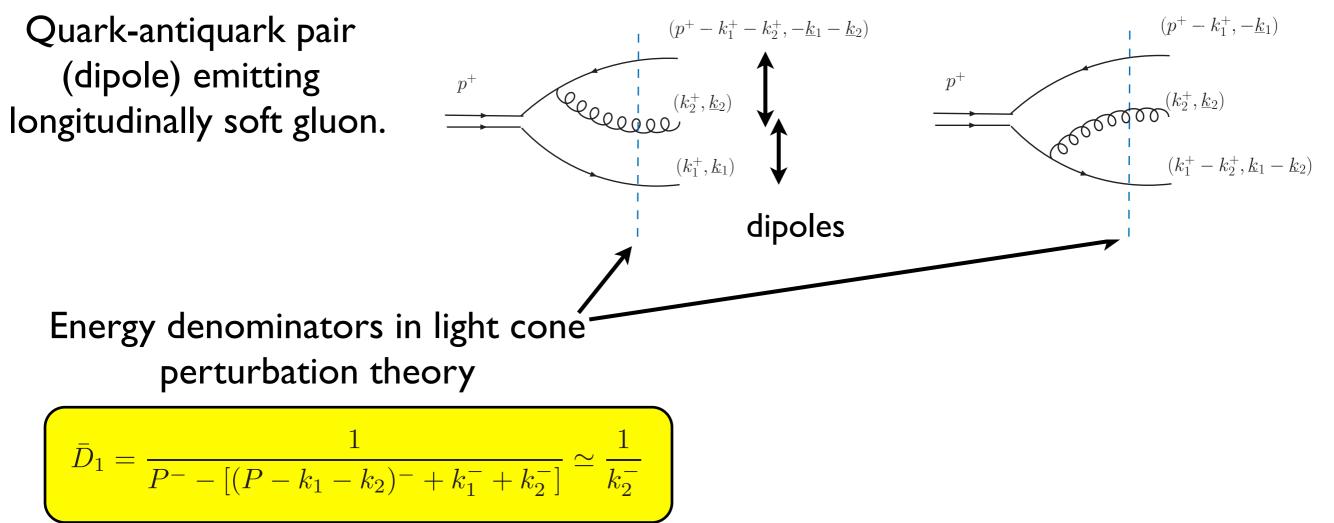
Isomorphism with the Galilean dynamics in 2 dimensions:

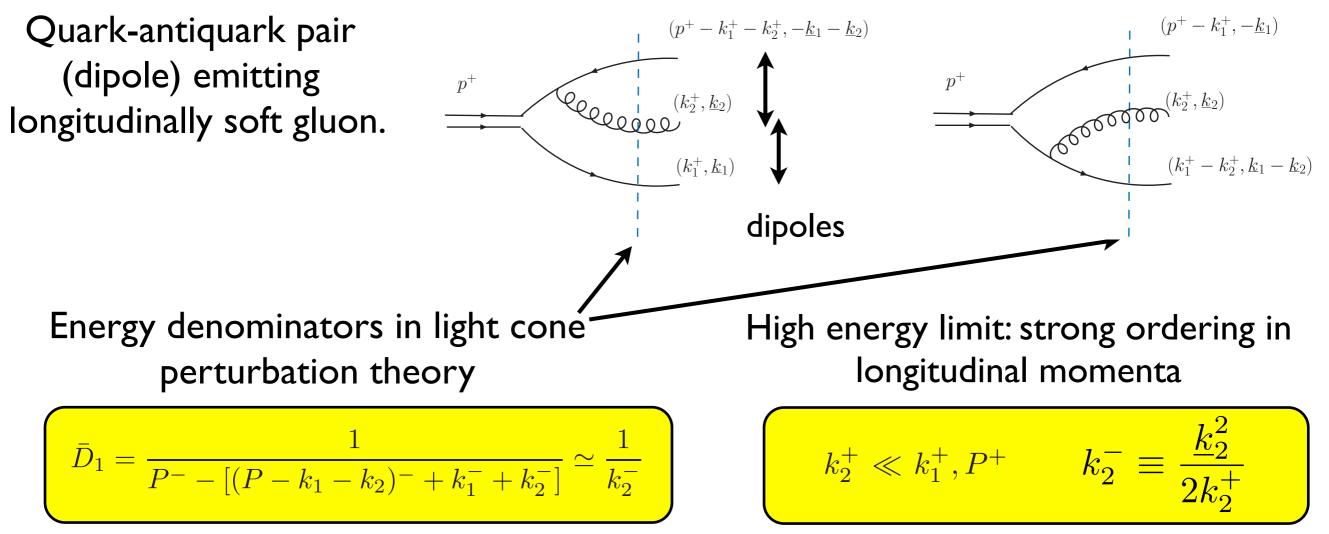
- P[−] → Hamiltonian
- $P^+ \longrightarrow Mass$

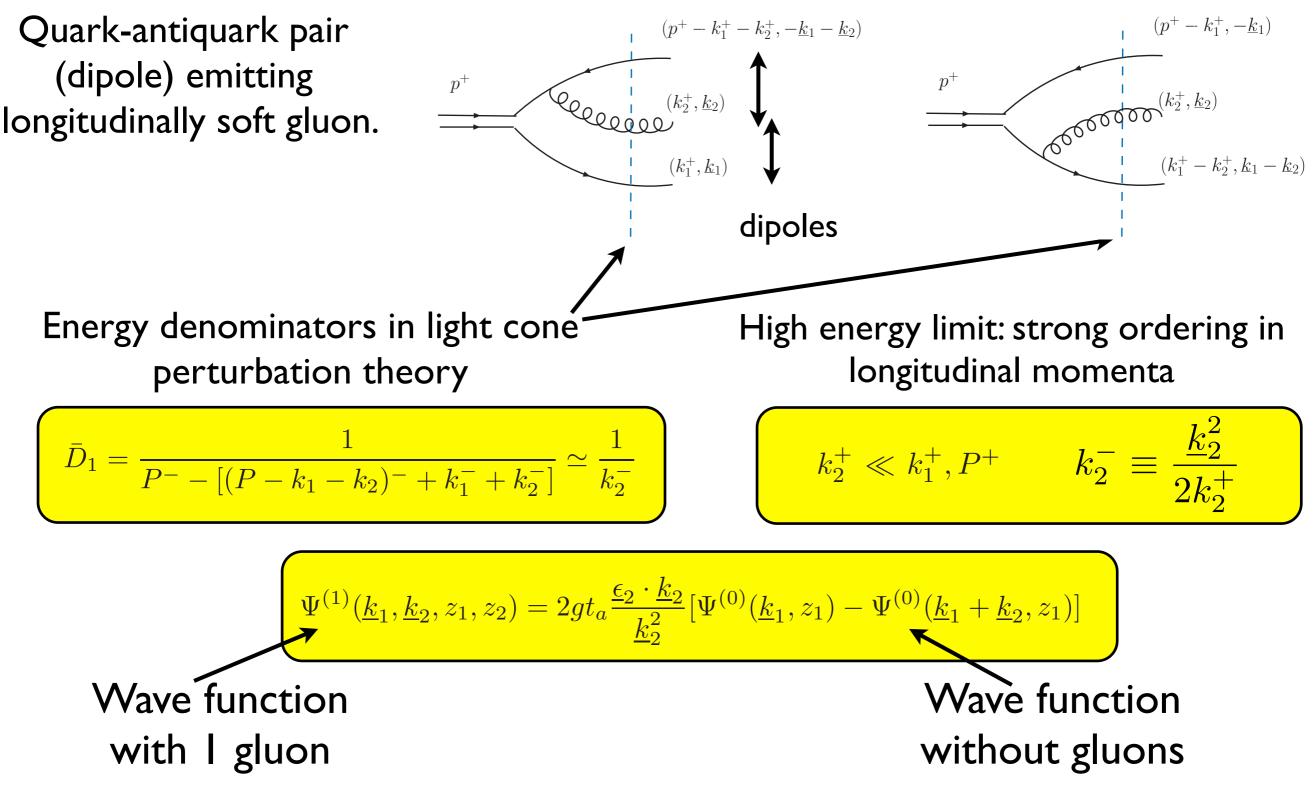
 $P_T \longrightarrow 2$ -dim. momentum

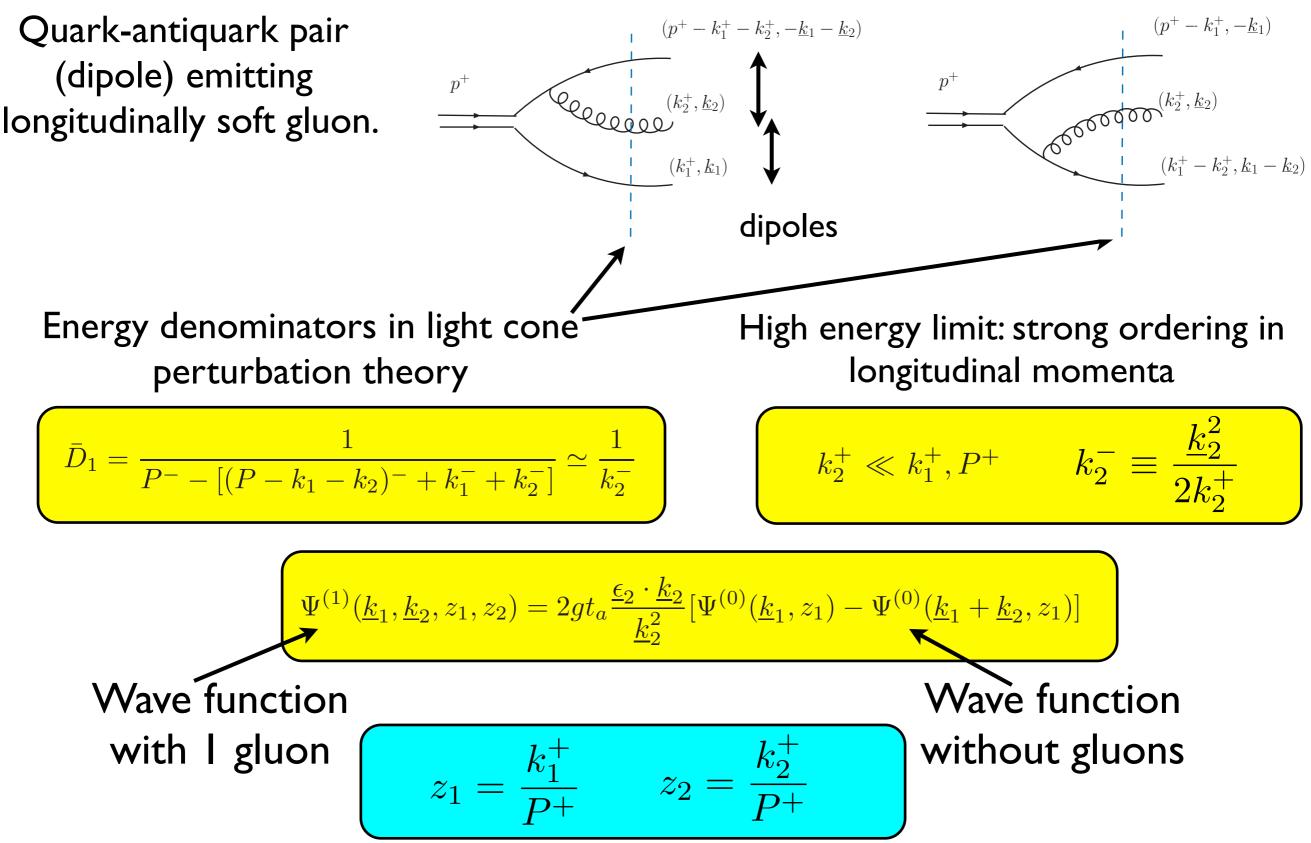


Energy denominators entangle the momenta of all the particles in the cascades. Need to consider all possible time ordered diagrams.









In transverse coordinate space

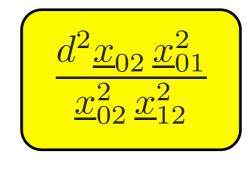
$$\Phi^{(1)}(\underline{x}_{01}, \underline{x}_{02}; z_1, z_2) = -\frac{igt_a}{\pi} \left(\frac{\underline{x}_{20}}{x_{20}^2} - \frac{\underline{x}_{21}}{x_{21}^2}\right) \cdot \underline{\epsilon}_2 \Psi^{(0)}(\underline{x}_{01}; z_1)$$

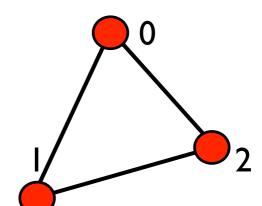
In transverse coordinate space

$$\Phi^{(1)}(\underline{x}_{01}, \underline{x}_{02}; z_1, z_2) = -\frac{igt_a}{\pi} \left(\frac{\underline{x}_{20}}{x_{20}^2} - \frac{\underline{x}_{21}}{x_{21}^2}\right) \cdot \underline{\epsilon}_2 \Psi^{(0)}(\underline{x}_{01}; z_1)$$

Soft gluons factorize in the transverse spae

Dipole kernel in the limit of high energy:





$$\frac{\partial N_{01}}{\partial Y} = \bar{\alpha}_s \int \frac{d^2 x_2}{2\pi} \frac{x_{01}^2}{x_{02}^2 x_{12}^2} [N_{02} + N_{12} - N_{01}]$$

$$\frac{\partial N_{01}}{\partial Y} = \bar{\alpha}_s \int \frac{d^2 x_2}{2\pi} \frac{x_{01}^2}{x_{02}^2 x_{12}^2} [N_{02} + N_{12} - N_{01}]$$

Dipole version of the BFKL equation.

Y rapidity

 N_{01} dipole scattering amplitude (related to the gluon density)

In transverse coordinate space $\begin{array}{l} \underbrace{\Phi^{(1)}(\underline{x}_{01}, \underline{x}_{02}; z_1, z_2) = -\frac{igt_a}{\pi} \left(\frac{x_{20}}{x_{20}^2} - \frac{x_{21}}{x_{21}^2} \right) \cdot \underline{\epsilon}_2 \Psi^{(0)}(\underline{x}_{01}; z_1)}{\underline{k}_2 + 2} \\ \end{array}$ Soft gluons factorize in the transverse space Dipole kernel in the limit of high energy: $\begin{array}{l} \underbrace{\frac{d^2 \underline{x}_{02} \underline{x}_{01}^2}{\underline{x}_{02}^2 \underline{x}_{12}^2} \\ \underbrace{\frac{d^2 \underline{x}_{02} \underline{x}_{01}^2}{\underline{x}_{02}^2 \underline{x}_{12}^2} \\ \underbrace{\frac{d^2 \underline{x}_{02} \underline{x}_{01}^2}{\underline{x}_{02}^2 \underline{x}_{12}^2} \\ \end{array}$ Soft gluons factorize in the transverse space

$$\frac{\partial N_{01}}{\partial Y} = \bar{\alpha}_s \int \frac{d^2 x_2}{2\pi} \frac{x_{01}^2}{x_{02}^2 x_{12}^2} [N_{02} + N_{12} - N_{01}]$$

Dipole version of the BFKL equation.

Y rapidity

 N_{01} dipole scattering amplitude (related to the gluon density)

No restrictions on the transverse coordinates (or momenta).

$$\bar{D}_1 = \frac{1}{P^- - \left[(P - k_1 - k_2)^- + k_1^- + k_2^-\right]} \simeq \frac{1}{k_2^-}$$

$$k_2^+ \ll k_1^+, P^+$$
 $k_2^- \equiv \frac{k_2^2}{2k_2^+}$

$$\bar{D}_1 = \frac{1}{P^- - \left[(P - k_1 - k_2)^- + k_1^- + k_2^-\right]} \simeq \frac{1}{k_2^-}$$

Decoupling of momenta in different denominators

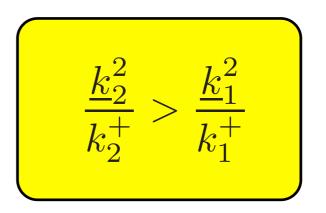
$$k_2^+ \ll k_1^+, P^+$$
 $k_2^- \equiv \frac{\underline{k}_2^2}{2k_2^+}$

$$\bar{D}_1 = \frac{1}{P^- - \left[(P - k_1 - k_2)^- + k_1^- + k_2^-\right]} \simeq \frac{1}{k_2^-}$$

$$k_2^+ \ll k_1^+, P^+$$
 $k_2^- \equiv \frac{\underline{k}_2^2}{2k_2^+}$

Decoupling of momenta in different denominators

Better treatment of kinematics

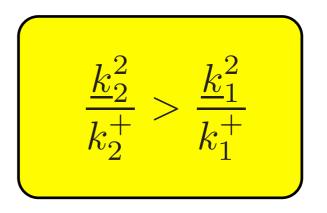


$$\bar{D}_1 = \frac{1}{P^- - \left[(P - k_1 - k_2)^- + k_1^- + k_2^-\right]} \simeq \frac{1}{k_2^-}$$

$$k_2^+ \ll k_1^+, P^+$$
 $k_2^- \equiv \frac{\underline{k}_2^2}{2k_2^+}$

Decoupling of momenta in different denominators

Better treatment of kinematics



For more emissions

$$\dots \frac{\underline{k}_4^2}{k_4^+} > \frac{\underline{k}_3^2}{k_3^+} > \frac{\underline{k}_2^2}{k_2^+} > \frac{\underline{k}_1^2}{k_1^+}$$

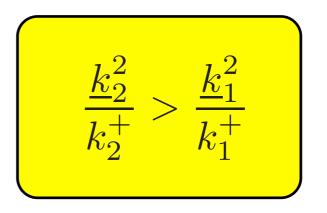
Ordering in the fluctuation time: Dokshitzer, Marchesini, Salam

$$\bar{D}_1 = \frac{1}{P^- - \left[(P - k_1 - k_2)^- + k_1^- + k_2^-\right]} \simeq \frac{1}{k_2^-}$$

$$k_2^+ \ll k_1^+, P^+$$
 $k_2^- \equiv \frac{\underline{k}_2^2}{2k_2^+}$

Decoupling of momenta in different denominators

Better treatment of kinematics

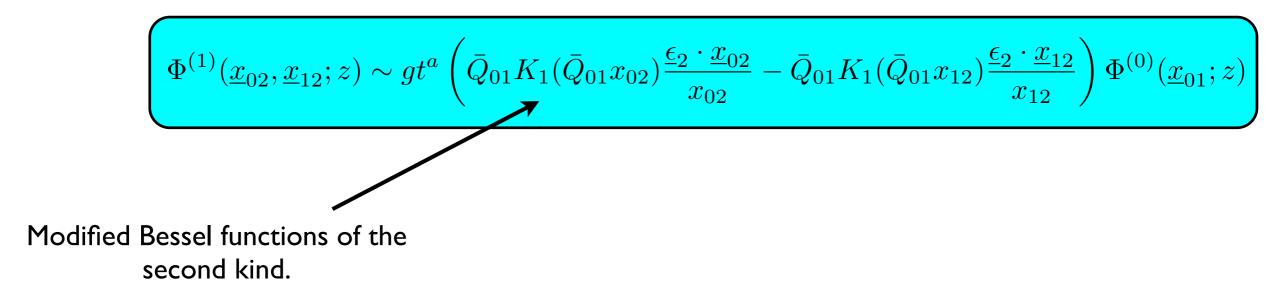


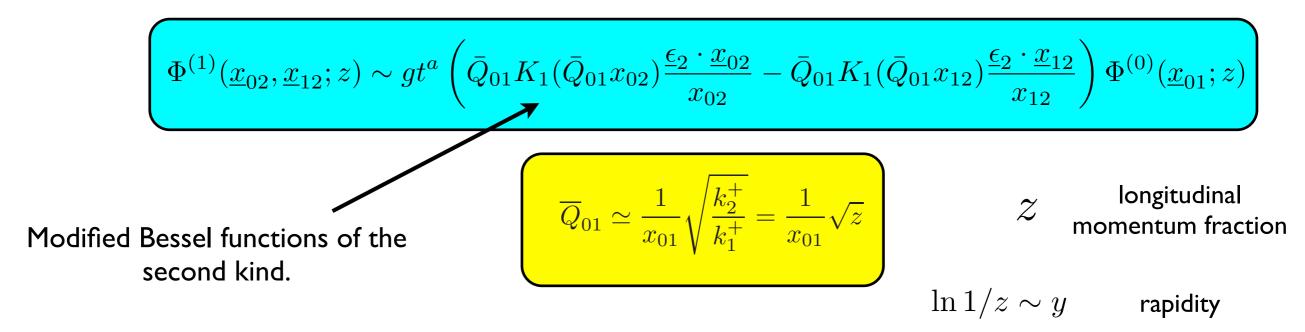
For more emissions

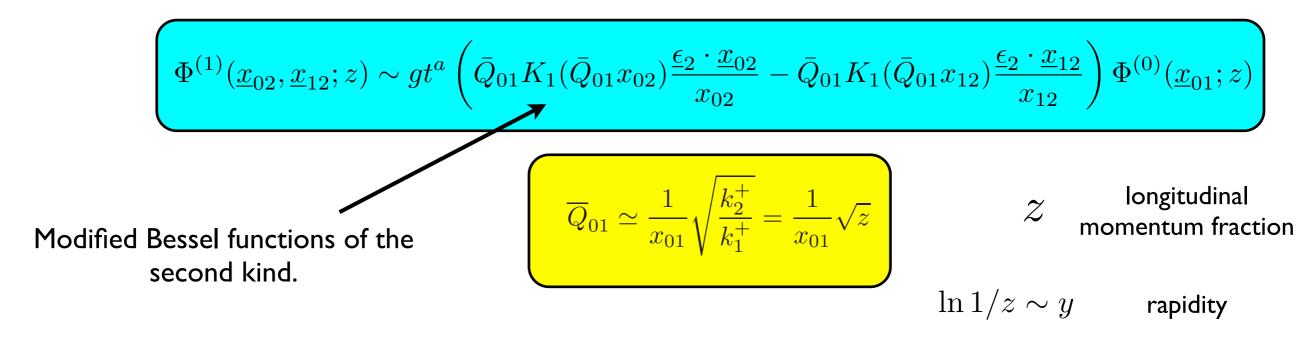
$$\dots \frac{\underline{k}_4^2}{k_4^+} > \frac{\underline{k}_3^2}{k_3^+} > \frac{\underline{k}_2^2}{k_2^+} > \frac{\underline{k}_1^2}{k_1^+}$$

Ordering in the fluctuation time: Dokshitzer, Marchesini, Salam $\sim \frac{k^+}{k^2}$

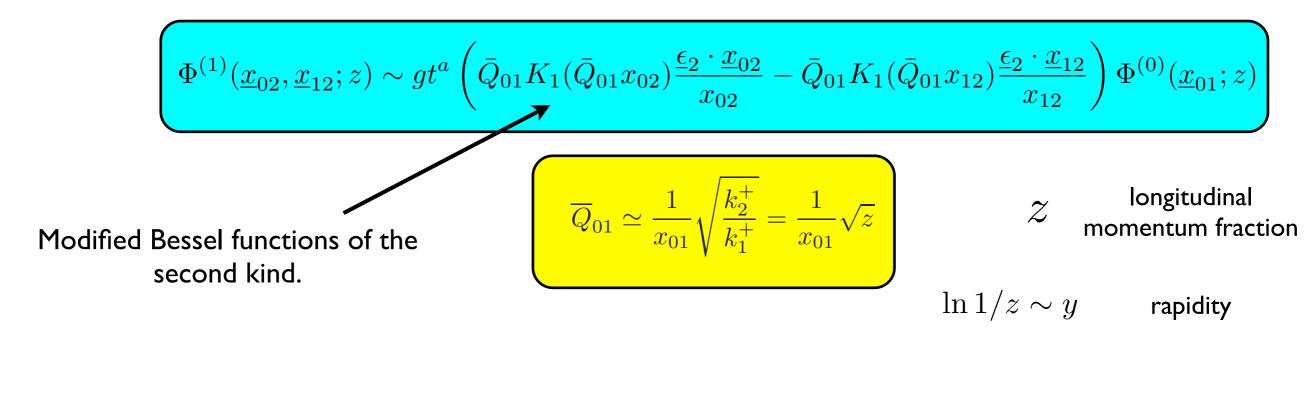
Longitudinal and transverse momenta tied together.



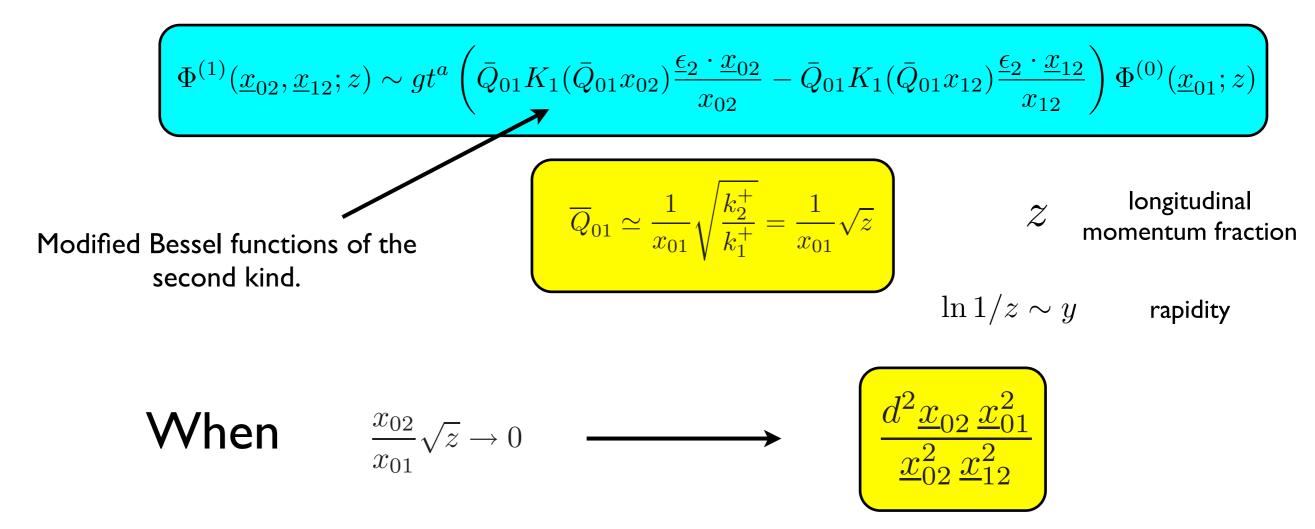




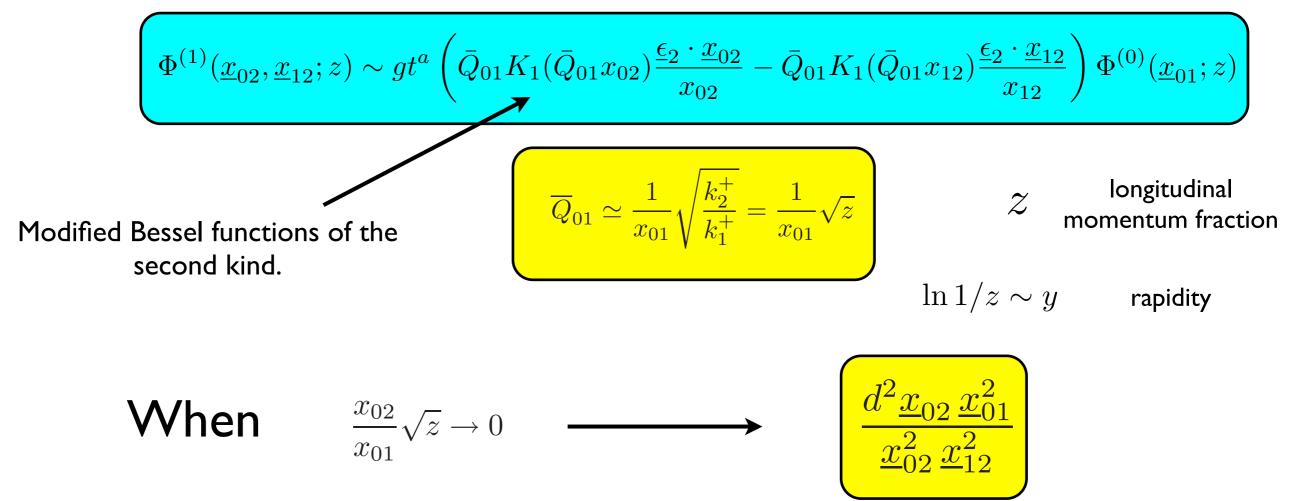
When
$$\frac{x_{02}}{x_{01}}\sqrt{z} \to 0$$



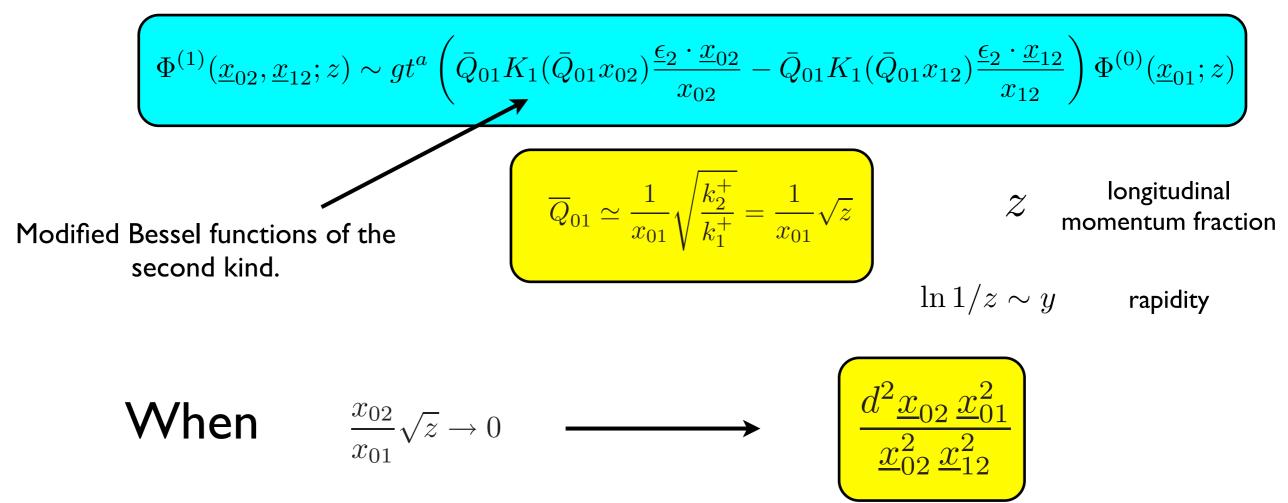
When
$$\frac{x_{02}}{x_{01}}\sqrt{z} \to 0$$
 \longrightarrow



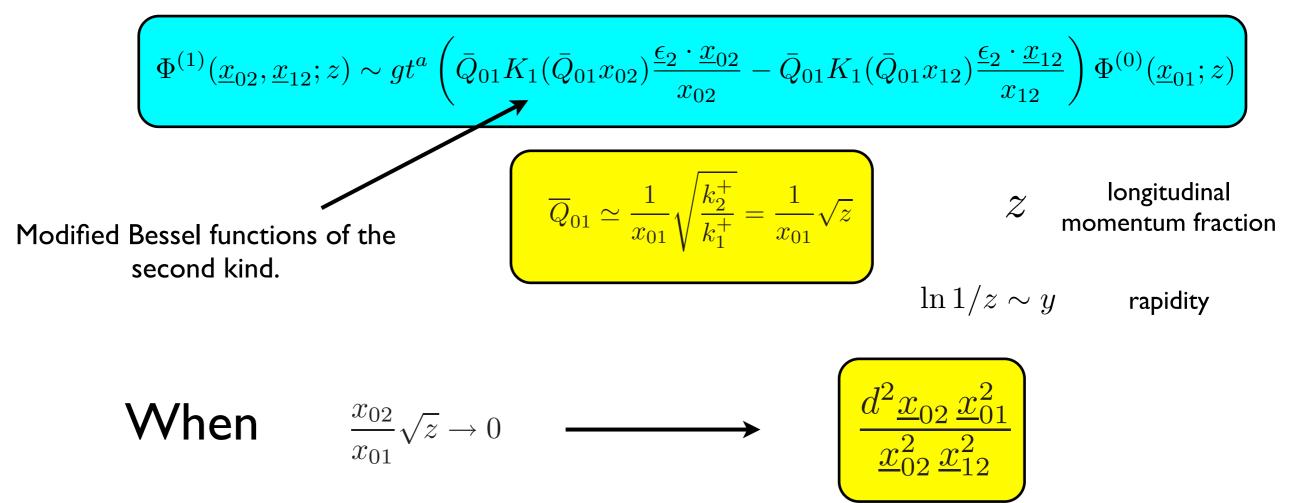
Approximate Fourier transform to coordinate space



• Energy dependent cutoff in impact parameter: exponential tails, range depends on the energy.



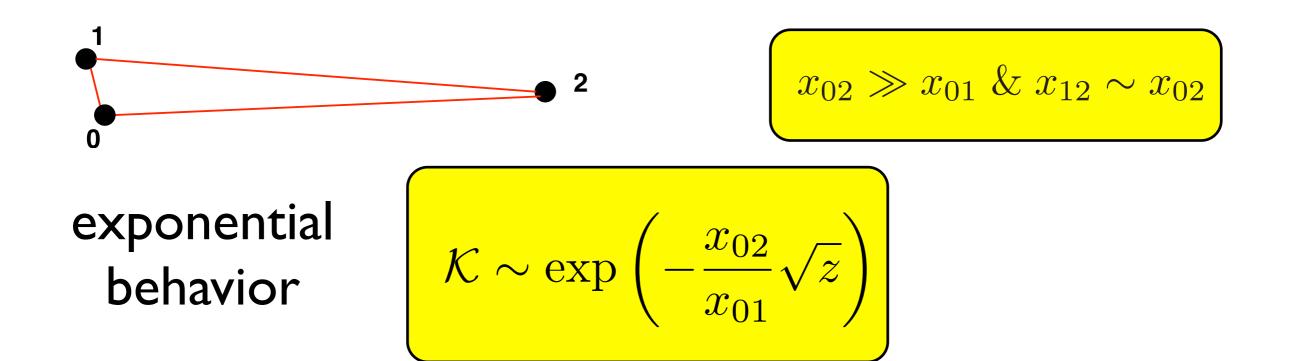
- Energy dependent cutoff in impact parameter: exponential tails, range depends on the energy.
- Violation of conformal invariance in 2-dimensions.



- Energy dependent cutoff in impact parameter: exponential tails, range depends on the energy.
- Violation of conformal invariance in 2-dimensions.
- Recovering original dipole kernel in the high energy limit.

Impact parameter and NLL correction

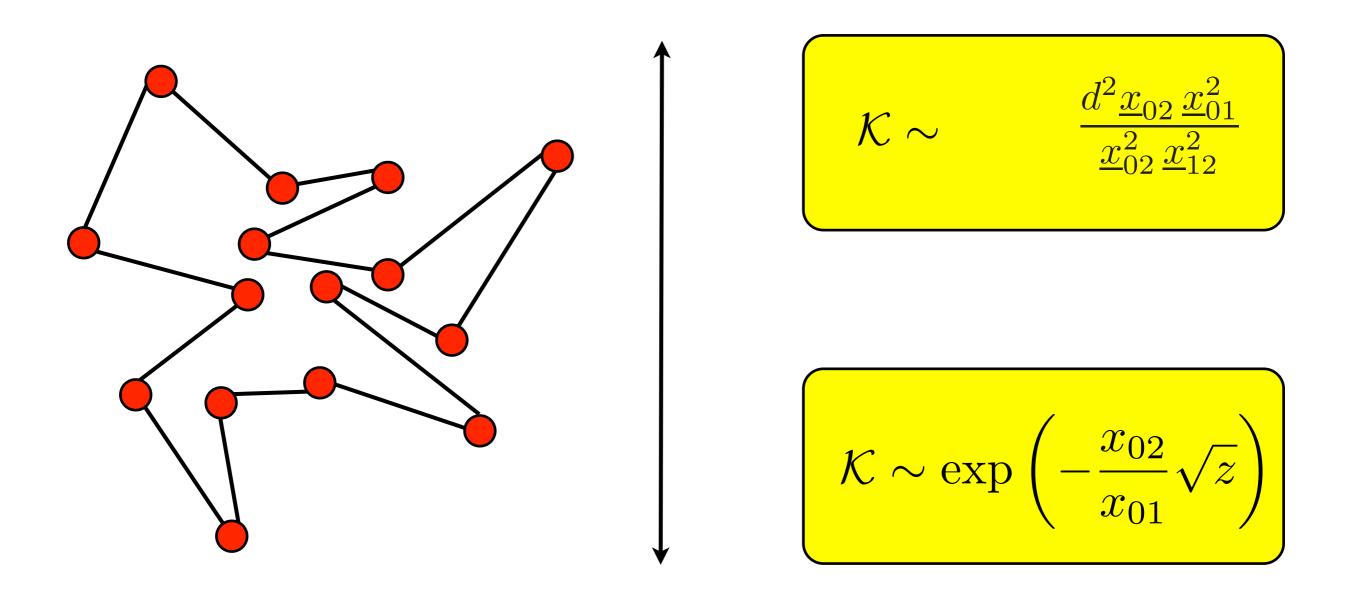
Cutoff on configuration of large dipoles



Recovering part of NLL contribution from explicit calculation by Balitsky and Chirilli (non-conformal part).

$$\mathcal{K}_{\text{non-conf.}}^{\text{NLO}} \otimes N_Y \rightarrow -\frac{\bar{\alpha}_s^2}{\pi} \int \frac{d^2 \underline{x}_2 \, x_{01}^2}{x_{02}^4} \log^2\left(\frac{x_{02}}{x_{01}}\right) \left[\dots\right]$$

Random walk-diffusion in impact parameter space



The growth of the interaction area is slowed down due to the different functional form of the branching kernel.

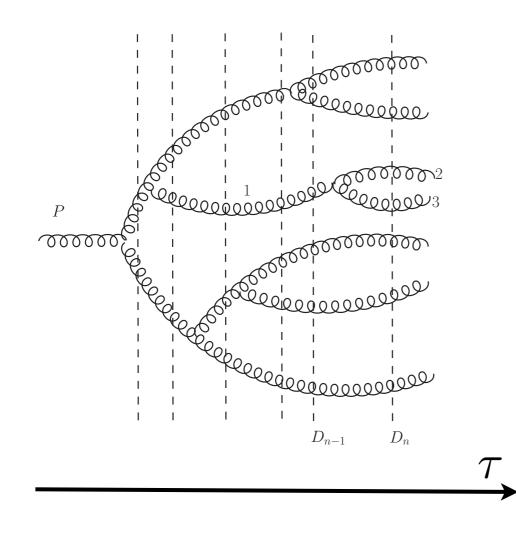
Da capo, but this time keep kinematics exact through the complete evolution: both vertices and energy denominators exact.

Da capo, but this time keep kinematics exact through the complete evolution: both vertices and energy denominators exact.

Gluon in the initial state. Dynamics similar to the dipole model.

Da capo, but this time keep kinematics exact through the complete evolution: both vertices and energy denominators exact.

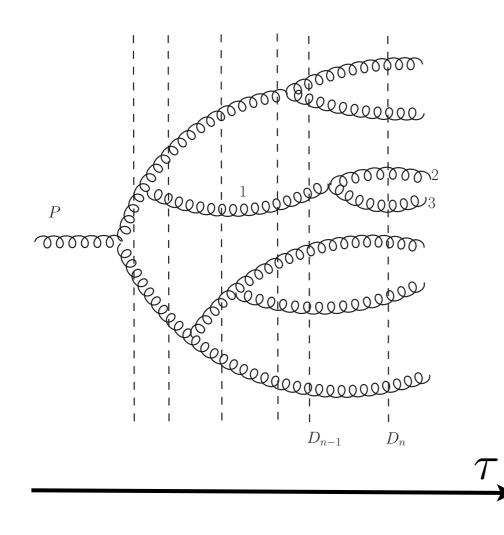
Gluon in the initial state. Dynamics similar to the dipole model.



Can one do better?

Da capo, but this time keep kinematics exact through the complete evolution: both vertices and energy denominators exact.

Gluon in the initial state. Dynamics similar to the dipole model.

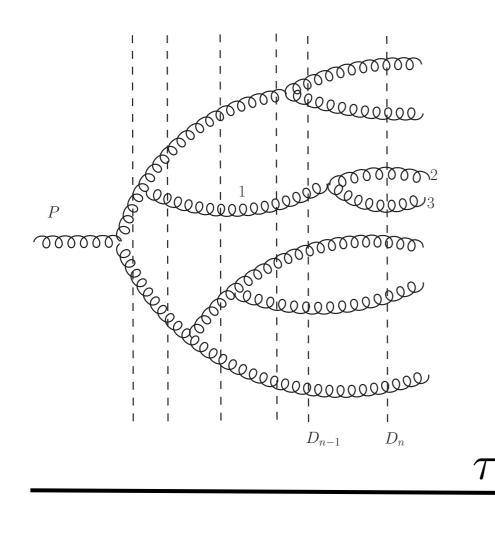


Special helicity configuration: helicity conserved through the whole cascade.

Can one do better?

Da capo, but this time keep kinematics exact through the complete evolution: both vertices and energy denominators exact.

Gluon in the initial state. Dynamics similar to the dipole model.



Special helicity configuration: helicity conserved through the whole cascade.

Unlike the small x limit now the energy denominators entangle all particle momenta.

$$\Psi_{n+1}(k_0, k_1, \dots, k_n) = \frac{g}{\sqrt{\xi_{01}}} \frac{\underline{\epsilon}^{(-)} \underline{v}_{01}}{D_n + \xi_{01} \underline{v}_{01}^2} \Psi_n(k_{01}, k_2, \dots, k_n)$$

fraction of longitudinal momentum of i'th particle

 \underline{k}_i

 z_i

transverse momentum of the i'th particle

 z_i

 \underline{k}_i

$$\Psi_{n+1}(k_0, k_1, \dots, k_n) = \frac{g}{\sqrt{\xi_{01}}} \frac{\underline{\epsilon}^{(-)} \underline{v}_{01}}{D_n + \xi_{01} \underline{v}_{01}^2} \Psi_n(k_{01}, k_2, \dots, k_n)$$
fraction of longitudinal momentum of i'th particle
$$z_{01} = z_0 + z_1$$

$$k_{01} = k_0 + k_1$$

$$z_1$$

$$k_1$$

$$\Psi_{n+1}(k_0, k_1, \dots, k_n) = \frac{g}{\sqrt{\xi_{01}}} \frac{\underline{\epsilon}^{(-)} \underline{v}_{01}}{D_n + \xi_{01} \underline{v}_{01}^2} \Psi_n(k_{01}, k_2, \dots, k_n)$$
fraction of longitudinal momentum of i'th particle
$$z_{01} = z_0 + z_1$$

$$k_{01} = k_0 + k_1$$

$$z_1$$
transverse momentum of the i'th particle
$$z_1$$

reduced lightfront 'mass'

 z_i

 \underline{k}_i

$$\xi_{01} = \frac{z_0 z_1}{z_0 + z_1}$$

$$\begin{split} \Psi_{n+1}(k_0, k_1, \dots, k_n) &= \frac{g}{\sqrt{\xi_{01}}} \frac{\underline{\epsilon}^{(-)} \underline{v}_{01}}{D_n + \xi_{01} \underline{v}_{01}^2} \Psi_n(k_{01}, k_2, \dots, k_n) \\ z_i & \text{fraction of longitudinal} \\ \text{momentum of i'th particle} \\ \underline{k}_i & \text{transverse momentum of} \\ \text{the i'th particle} \\ \end{split}$$

$$\xi_{01} = \frac{z_0 z_1}{z_0 + z_1}$$

 z_i

 \underline{k}_i

ative lightfront 'velocity'
$$\underbrace{\underline{v}_{01} = \frac{\underline{k}_0}{z_0} - \frac{\underline{k}_1}{z_1}}_{z_1}$$

 z_i

 \underline{k}_i

Isomorphism with non-relativistic dynamics apparent in the case of the exact kinematics.

Transverse coordinates

n-component wave function in transverse space

$$\Phi_n(1,\ldots,n) \equiv \Phi_n(z_1,\underline{r}_1;z_2,\underline{r}_2;\ldots,z_n,\underline{r}_n)$$

=
$$\int \frac{d^2\underline{k}_1}{(2\pi)^2} \frac{d^2\underline{k}_2}{(2\pi)^2} \cdots \frac{d^2\underline{k}_n}{(2\pi)^2} \exp(i\underline{k}_1 \cdot \underline{r}_1 + i\underline{k}_2 \cdot \underline{r}_2 + \ldots + i\underline{k}_n \cdot \underline{r}_n) \Psi_n(k_1,\ldots,k_n),$$

Recurrence relation in the transverse space with off-shell incoming particle $P^- = -\frac{Q^2}{2P^+}$

$$\Phi_n(1,\ldots,n) = i \frac{\epsilon^{(-)} \cdot \underline{r}_{12}}{\sqrt{\xi_{12}}} z_1 z_2 \ldots z_n \int \frac{d^2 \underline{r}'_1 \ldots d^2 \underline{r}'_{n-1}}{(2\pi)^n} \left(\frac{Q^2}{A}\right)^{\frac{n}{2}} K_n(\sqrt{Q^2 A}) \Phi_{n-1}(1',2',\ldots,(n-1)'),$$

$$A \equiv \xi_{12} \underline{r}_{12}^2 + z_{12} (\underline{r}_1' - \underline{R}_{12})^2 + z_3 (\underline{r}_2' - \underline{r}_3)^2 + \ldots + z_n (\underline{r}_{n-1}' - \underline{r}_n)^2$$

Recurrence relation is not easy to solve exactly in this case...

Case of the on-shell incoming gluon. $Q^2 \rightarrow 0$ Can resum the wave function completely.

$$-D_{n+1}\Psi_{n+1}(1,2,\ldots,n+1) = g\sum_{i=1}^{n} \frac{v_{(i,i+1)}^{*}}{\sqrt{\xi_{(i,i+1)}}}\Psi_{n}(1,2,\ldots,(i\,i+1),\ldots,n+1) \qquad n \to n+1$$

$$-D_n\Psi_n(1,2,\ldots,n) = g \sum_{k=1}^{n-1} \frac{v_{(k,k+1)}^*}{\sqrt{\xi_{(k,k+1)}}} \Psi_{n-1}(1,2,\ldots,(k\,k+1),\ldots,n) \qquad n-1 \to n$$

•••

Case of the on-shell incoming gluon. $Q^2 \rightarrow 0$ Can resum the wave function completely.

$$-D_{n+1}\Psi_{n+1}(1,2,\ldots,n+1) = g\sum_{i=1}^{n} \frac{v_{(i,i+1)}^{*}}{\sqrt{\xi_{(i,i+1)}}}\Psi_{n}(1,2,\ldots,(i\,i+1),\ldots,n+1) \qquad n \to n+1$$

$$-D_n\Psi_n(1,2,\ldots,n) = g \sum_{k=1}^{n-1} \frac{v_{(k,k+1)}^*}{\sqrt{\xi_{(k,k+1)}}} \Psi_{n-1}(1,2,\ldots,(k\,k+1),\ldots,n) \qquad n-1 \to n$$

Tree-level gluon wave function with exact kinematics

$$\Psi_n(1,2,\ldots,n) = (-1)^{n-1} g^{n-1} \Delta^{(n)} \frac{1}{\sqrt{z_1 z_2 \ldots z_n}} \frac{1}{\xi_{(12\ldots n-1)n} \xi_{(12\ldots n-2)(n-1\,n)} \cdots \xi_{1(2\ldots n)}} \times \frac{1}{v_{(12\ldots n-1)n} v_{(12\ldots n-2)(n-1\,n)} \cdots v_{1(2\ldots n)}}.$$

$$v_{(i_1i_2\dots i_p)(j_1j_2\dots j_q)} = \frac{k_{i_1} + k_{i_2} + \dots + k_{i_p}}{z_{i_1} + z_{i_2} + \dots + z_{i_p}} - \frac{k_{j_1} + k_{j_2} + \dots + k_{j_q}}{z_{j_1} + z_{j_2} + \dots + z_{j_q}},$$

$$\xi_{(i_1i_2\dots i_p)(j_1j_2\dots j_q)} = \frac{(z_{i_1}+z_{i_2}+\dots+z_{i_p})(z_{j_1}+z_{j_2}+\dots+z_{j_q})}{z_{i_1}+z_{i_2}+\dots+z_{i_p}+z_{j_1}+z_{j_2}+\dots+z_{j_q}},$$

Case of the on-shell incoming gluon. $Q^2 \rightarrow 0$ Can resum the wave function completely.

$$-D_{n+1}\Psi_{n+1}(1,2,\ldots,n+1) = g\sum_{i=1}^{n} \frac{v_{(i,i+1)}^{*}}{\sqrt{\xi_{(i,i+1)}}}\Psi_{n}(1,2,\ldots,(i\,i+1),\ldots,n+1) \qquad n \to n+1$$

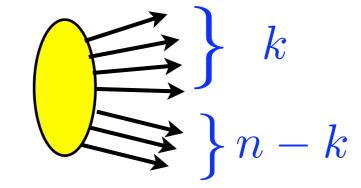
$$-D_n\Psi_n(1,2,\ldots,n) = g \sum_{k=1}^{n-1} \frac{v_{(k,k+1)}^*}{\sqrt{\xi_{(k,k+1)}}} \Psi_{n-1}(1,2,\ldots,(k\,k+1),\ldots,n) \qquad n-1 \to n$$

Tree-level gluon wave function with exact kinematics

$$\Psi_n(1,2,\ldots,n) = (-1)^{n-1} g^{n-1} \Delta^{(n)} \frac{1}{\sqrt{z_1 z_2 \ldots z_n}} \frac{1}{\xi_{(12\ldots n-1)n} \xi_{(12\ldots n-2)(n-1n)} \cdots \xi_{1(2\ldots n)}} \times \frac{1}{v_{(12\ldots n-1)n} v_{(12\ldots n-2)(n-1n)} \cdots v_{1(2\ldots n)}}.$$

$$v_{(i_1i_2\dots i_p)(j_1j_2\dots j_q)} = \frac{k_{i_1} + k_{i_2} + \dots + k_{i_p}}{z_{i_1} + z_{i_2} + \dots + z_{i_p}} - \frac{k_{j_1} + k_{j_2} + \dots + k_{j_q}}{z_{j_1} + z_{j_2} + \dots + z_{j_q}}$$

$$\xi_{(i_1i_2\dots i_p)(j_1j_2\dots j_q)} = \frac{(z_{i_1} + z_{i_2} + \dots + z_{i_p})(z_{j_1} + z_{j_2} + \dots + z_{j_q})}{z_{i_1} + z_{i_2} + \dots + z_{i_p} + z_{j_1} + z_{j_2} + \dots + z_{j_q}}$$



Transverse coordinates again

 $\Phi_n(1,\ldots,n) \equiv \Phi_n(z_1,\underline{r}_1;z_2,\underline{r}_2;\ldots,z_n,\underline{r}_n)$

 $= \int \frac{d^2 \underline{k}_1}{(2\pi)^2} \frac{d^2 \underline{k}_2}{(2\pi)^2} \dots \frac{d^2 \underline{k}_n}{(2\pi)^2} \exp(i\underline{k}_1 \cdot \underline{r}_1 + i\underline{k}_2 \cdot \underline{r}_2 + \dots + i\underline{k}_n \cdot \underline{r}_n) \Psi_n(k_1, \dots, k_n),$

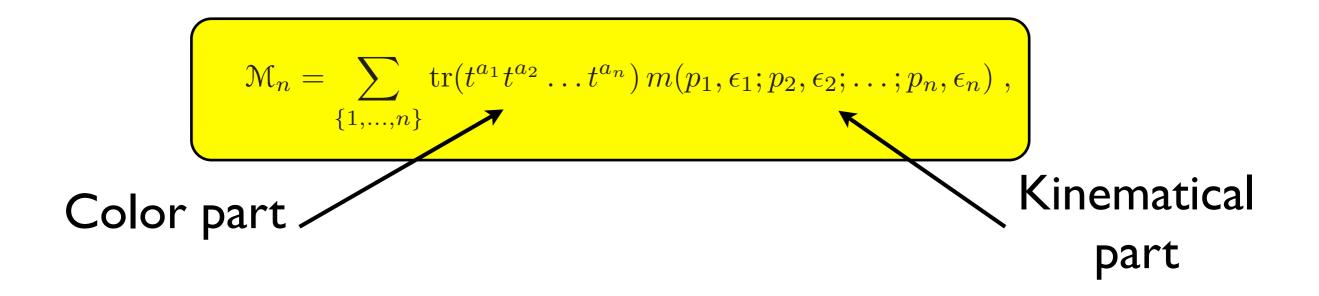
Closed expression is simple:

$$\Phi_n(z_1, \underline{r}_1; \dots; z_n, \underline{r}_n) = (-1)^{n-1} g^{n-1} \delta\left(1 - \sum_{i=1}^n z_i\right) \frac{1}{\sqrt{z_1 z_2 \dots z_n}} \frac{\underline{\epsilon}^{(-)} \underline{r}_{12} \underline{\epsilon}^{(-)} \underline{r}_{23} \dots \underline{\epsilon}^{(-)} \underline{r}_{n-1n}}{r_{12}^2 r_{23}^2 \dots r_{n-1n}^2}$$

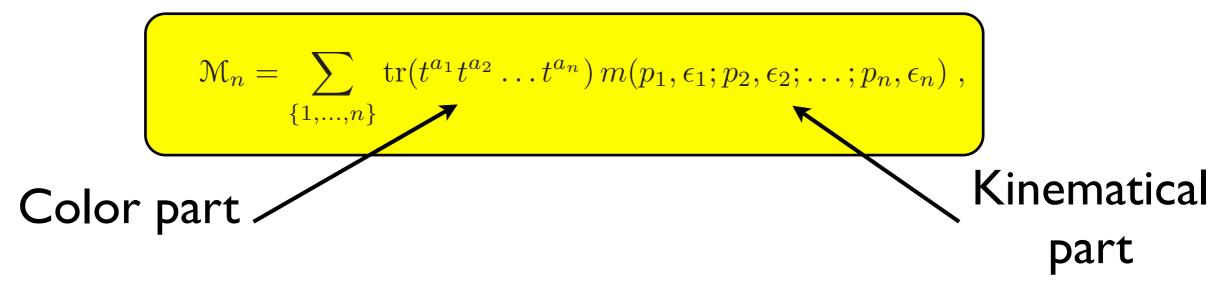
The wave function has similar form as in the small x limit even though we have exact kinematics.

(The evolution will be different...work in progress)

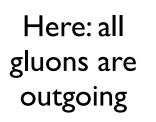
Relation to Parke-Taylor amplitudes

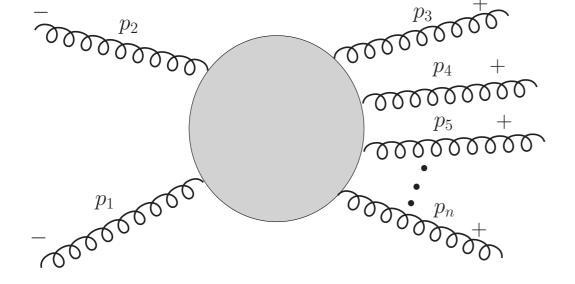


Relation to Parke-Taylor amplitudes



Maximally Helicity Violating amplitude for gluons: 2 to n





Relation to Parke-Taylor amplitudes $\mathcal{M}_n = \sum_{\{1,\dots,n\}} \operatorname{tr}(t^{a_1} t^{a_2} \dots t^{a_n}) m(p_1, \epsilon_1; p_2, \epsilon_2; \dots; p_n, \epsilon_n) ,$ Kinematical Color part part Maximally Helicity Violating amplitude for gluons: 2 to n $\overbrace{}^{-}$ p_2 p_2 Here: all 000000000 gluons are 000000000 outgoing -00000000 spinor products Tree level, Parke $m(1^-, 2^-, 3^+, \dots, n^+) = ig^{n-2} \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle n-2 \ n-1 \rangle \langle n-1 \ n \rangle \langle n1 \rangle},$ Taylor formula

Light-front to MHV dictionary...

$$|i\pm\rangle = \psi_{\pm}(k_i) = \frac{1}{2}(1\pm\gamma_5)\psi(k_i) , \quad \langle\pm i| = \overline{\psi_{\pm}(k_i)} ,$$

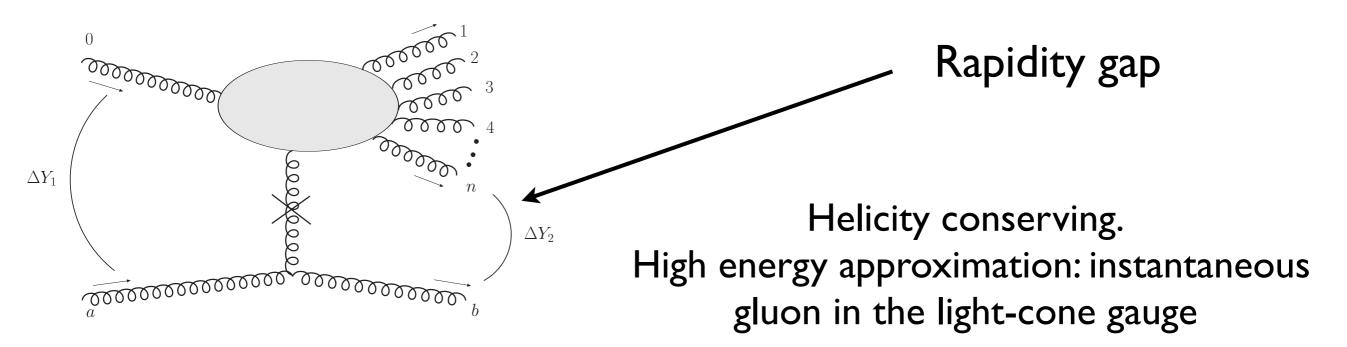
 $\langle i|j\rangle = \langle i-|j+\rangle, \quad [ij] = \langle i+|j-\rangle$ spinor products

$$\langle ij \rangle = \sqrt{z_i z_j} \,\underline{\epsilon}^{(+)} \cdot \left(\frac{\underline{k}_i}{z_i} - \frac{\underline{k}_j}{z_j}\right) \qquad [ij] = \sqrt{z_i z_j} \,\underline{\epsilon}^{(-)} \cdot \left(\frac{\underline{k}_i}{z_i} - \frac{\underline{k}_j}{z_j}\right)$$

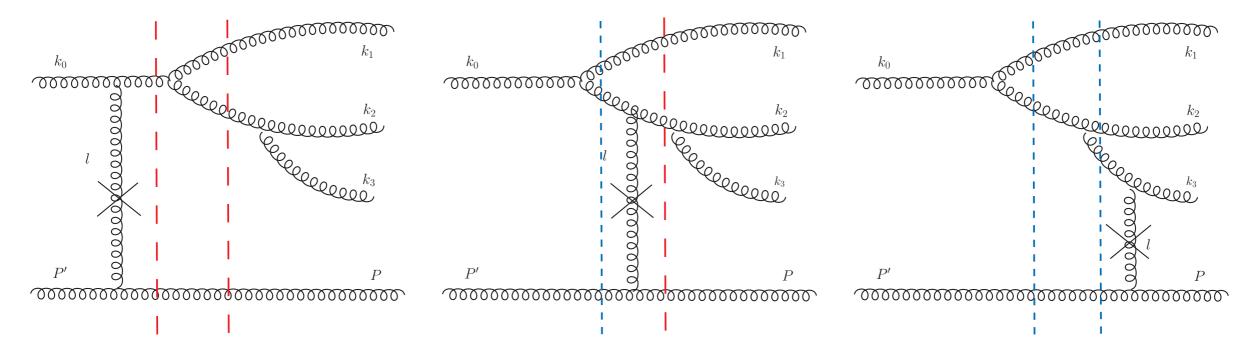
$$\langle ij \rangle = \sqrt{z_i z_j} \underline{\epsilon}^{(+)} \cdot \underline{v}_{ij},$$

$$[ij] = \sqrt{z_i z_j} \underline{\epsilon}^{(-)} \cdot \underline{v}_{ij} ,$$

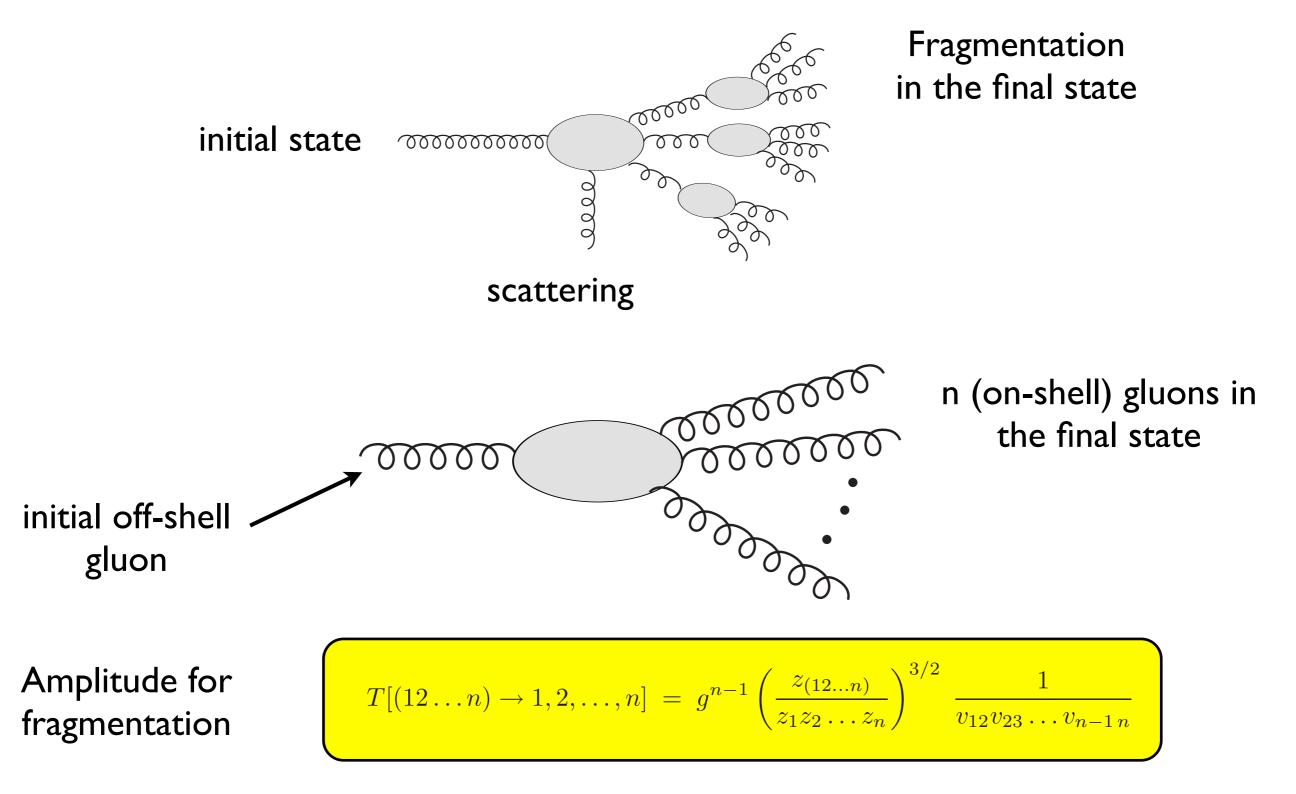
Scattering from light -cone wave functions



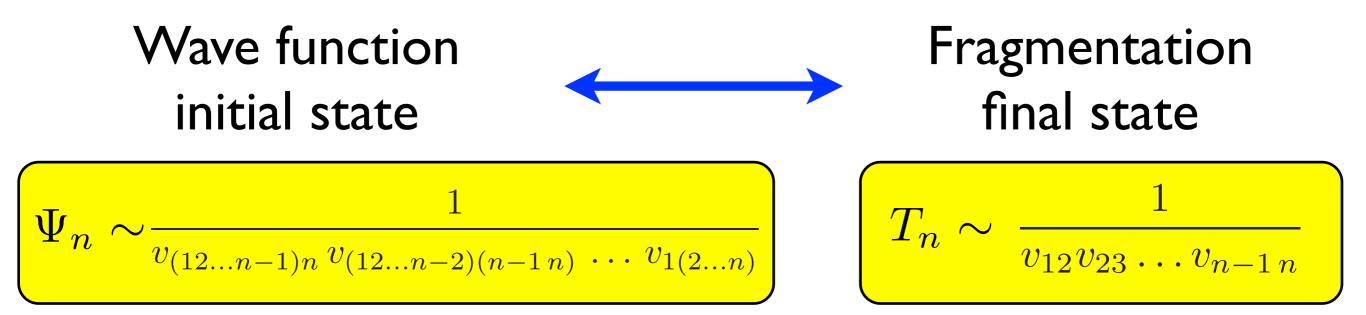
Sum over initial and final state emissions



Final state emissions: gluon fragmentation



Duality: wave function vs fragmentation



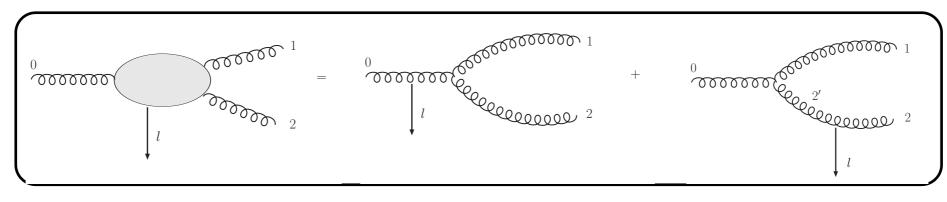
Nearly identical expressions (the same topology of graphs): different combinations of momenta

$$v_{(i_1i_2\dots i_p)(j_1j_2\dots j_q)} = \frac{k_{i_1} + k_{i_2} + \dots + k_{i_p}}{z_{i_1} + z_{i_2} + \dots + z_{i_p}} - \frac{k_{j_1} + k_{j_2} + \dots + k_{j_q}}{z_{j_1} + z_{j_2} + \dots + z_{j_q}},$$

Relation with MHV

Relation with MHV

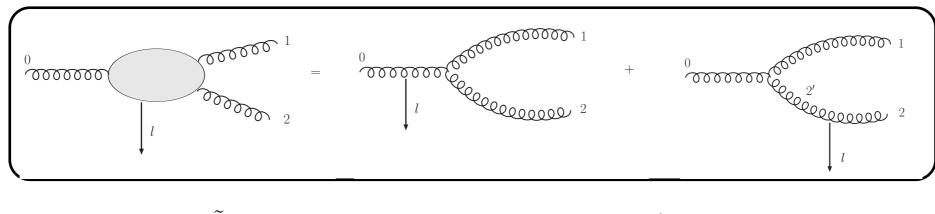
Two gluons



 $\tilde{\Psi}_2(1,2) = T[(12) \to 1,2] + \Psi_2(1,2'),$

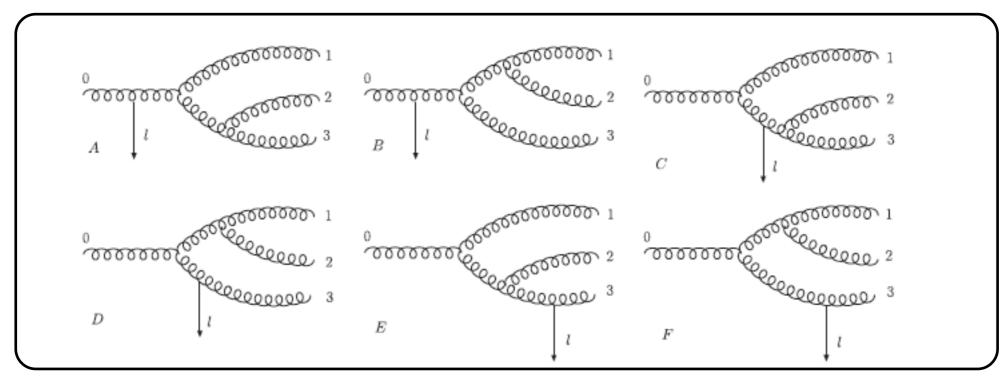
Relation with MHV

Two gluons



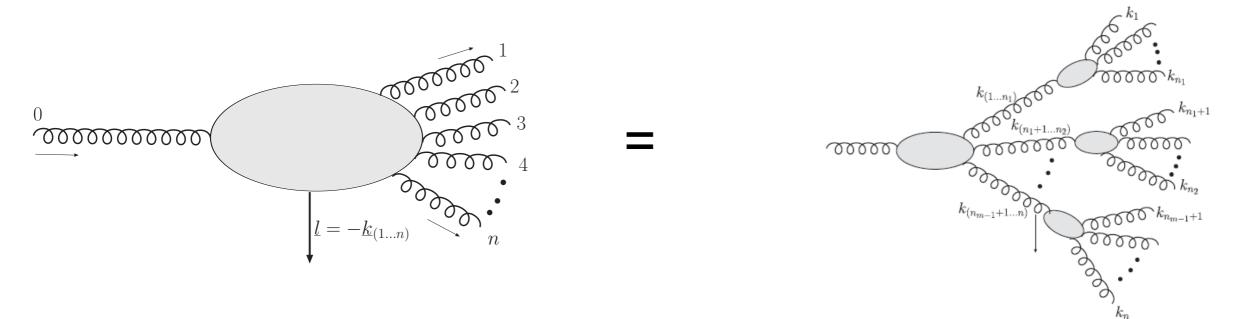
 $\tilde{\Psi}_2(1,2) = T[(12) \to 1,2] + \Psi_2(1,2'),$

Three gluons



$$\begin{split} \Psi_3(1,2,3) &= \Psi_1(123')T[(123) \to 1,2,3] \\ &+ \Psi_2(1,(23)')T[(23) \to 2,3] \\ &+ \Psi_2(12,3')T[(12) \to 1,2] + \Psi_3(1,2,3'). \end{split}$$

Master formula for arbitrary number of gluons



Sum over all possible attachments of the exchanged gluon. Sum over all possible combinations of wave-functions and fragmentation.

$$\tilde{\Psi}_n(1,2,\ldots,n) = \sum_{m=1}^n \sum_{\substack{(1 \le n_1 < n_2 < \ldots < n_{m-1} \le n)}} \Psi_m((1\ldots n_1)(n_1+1\ldots n_2)\ldots (n_{m-1}+1\ldots n))$$

× $T[(1\ldots n_1) \to 1,\ldots,n_1] T[(n_1+1\ldots n_2) \to n_1+1,\ldots,n_2] \ldots T[(n_{m-1}+1\ldots n) \to n_{m-1}+1,\ldots,n].$

$$M(0; a \rightarrow 1, \dots, n; b) \simeq \frac{s}{t} \times \tilde{\Psi}_n$$

2 to 2 amplitude
Spinor products:

$$\langle ii + 1 \rangle = \sqrt{z_i z_{i+1}} v_{ii+1}$$

Recover MHV amplitude in the light cone formalism

$$M(0; a \to 1, \dots, n; b) \simeq g^{n+1} \frac{\langle a0 \rangle^4}{\langle a0 \rangle \langle 01 \rangle \langle 12 \rangle \langle n-1 n \rangle \langle nb \rangle \langle ba \rangle},$$

• Reformulation of the dipole kernel to include effects from kinematics.

- Reformulation of the dipole kernel to include effects from kinematics.
- Impact parameter dependence significantly modified: exponential tails with the energy-dependent cutoff.

- Reformulation of the dipole kernel to include effects from kinematics.
- Impact parameter dependence significantly modified: exponential tails with the energy-dependent cutoff.
- Resummation of the light cone wave function with exact kinematics.

- Reformulation of the dipole kernel to include effects from kinematics.
- Impact parameter dependence significantly modified: exponential tails with the energy-dependent cutoff.
- Resummation of the light cone wave function with exact kinematics.
- Resummation of the fragmentation amplitudes. Duality between the fragmentation and the wave functions.

- Reformulation of the dipole kernel to include effects from kinematics.
- Impact parameter dependence significantly modified: exponential tails with the energy-dependent cutoff.
- Resummation of the light cone wave function with exact kinematics.
- Resummation of the fragmentation amplitudes. Duality between the fragmentation and the wave functions.
- Derivation of the scattering amplitudes in the light cone formalism.

- Reformulation of the dipole kernel to include effects from kinematics.
- Impact parameter dependence significantly modified: exponential tails with the energy-dependent cutoff.
- Resummation of the light cone wave function with exact kinematics.
- Resummation of the fragmentation amplitudes. Duality between the fragmentation and the wave functions.
- Derivation of the scattering amplitudes in the light cone formalism.
- Consistency check with (new derivation of) the MHV amplitudes.