High Energy Scattering Amplitudes in AdS/CFT

Jochen Bartels

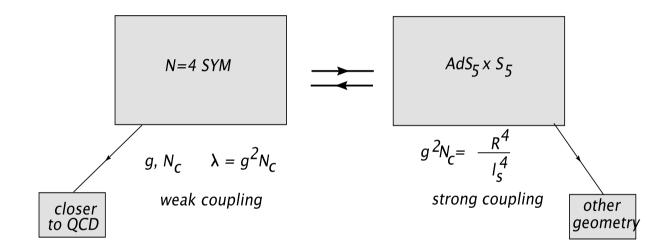
II.Inst.f.Theor.Physik, Univ.Hamburg

From Particles and Partons to Nuclei and Fields: 'Alfest', Columbia University October 23 - 25, 2009

- Introduction
- High energy scattering of planar amplitudes
- The Pomeron in AdS/CFT
- What is next: triple Pomeron vertex, integrability in high energy scattering amplitudes
- Conclusions

Introduction

Frame of this talk is the AdS/CFT correspondence hypothesis:



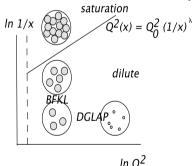
On both sides expansion in $1/N_c$ (expansion in toplogy).

Is N = 4 SYM soluble: hope so far based (mainly) upon anomalous dimensions (integrability). What about scattering amplitudes? Regge limit historically important.

This talk: two parts

- (a) scattering amplitudes in the planar limit.
 Main interest: n point amplitudes in N = 4, guide for multiloop/multileg amplitudes in QCD, BDS formula.
 Is N = 4SYM soluble: integrability?
- (b) Vacuum exchange (Pomeron, cylinder): (Soft) Pomeron in hadron-hadron scattering is non-pertubative: need methods other the pQCD. But: (Soft) Pomeron is also sensitive to low-energy features of QCD (slope α' : chiral dynamics).

Hard Pomeron: in scattering of small-size projectiles (virtual photon) Soft Pomeron: in hadron-hadron scattering Transition in deep inelastic scattering (saturation, unitarization)

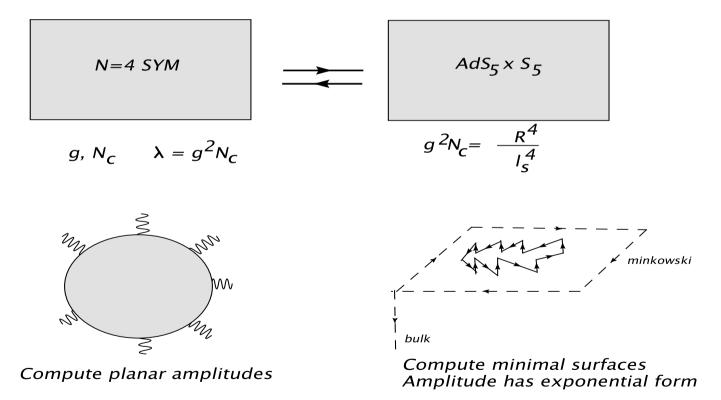


transition from hard to soft

AdS/CFT correspondence: first the hard Pomeron, unitarization. For soft Pomeron: need more sophisticated geometry on the string theory side (modelling).

Planar scattering amplitudes at high energies

N = 4, MHV amplitudes. Duality:



Gauge theory side: enormous activity in two loop calculations, beyond MHV. String theory side: mimimal surfaces are hard to compute, a few cases are known (Alday, Maldacena).

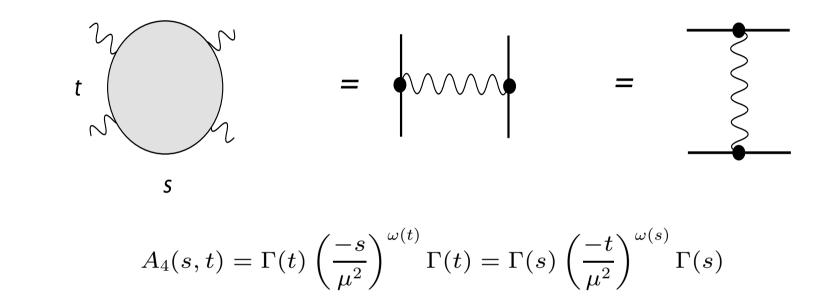
Most remarkable: Bern-Dixon-Smirnow (BDS) formula for planar *n*-gluon scattering amplitude:

Remove color factors, factor out tree amplitude, IR singular:

$$tr(T^{a_1}...T^{a_n}) + noncycl.perm, \quad A_n = A_n^{tree} \cdot M_n(\epsilon)$$
$$\ln M_n = \sum_l a^l \left[\left(f^{(l)}(\epsilon) I_n(l\epsilon) + F_n(0) \right) + C^{(l)} + E_n^{(l)}[\epsilon] \right]$$
$$a = \frac{N_c \alpha}{2\pi} (4\pi e^{-\gamma})^{\epsilon}, \quad d = 4 - 2\epsilon$$

Based upon: universality of IR singularities (=poles in ϵ), and 1-loop calculation.

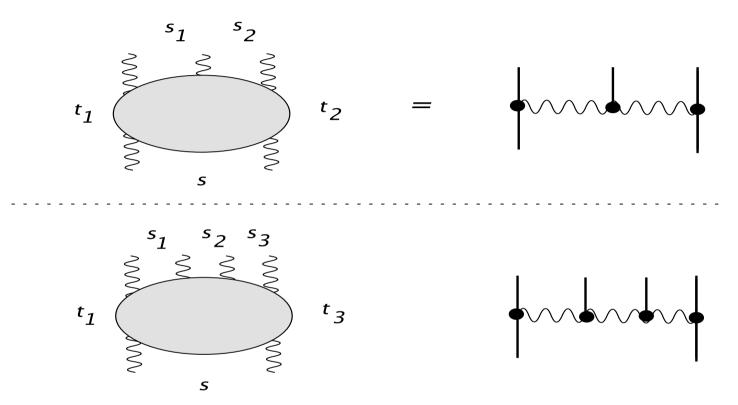
Several tests (Alday, Maldacena; Drummond, Korchemsky, Sokatchev; JB, Lipatov, Sabio-Vera): partly successful ($n \leq 5$, partly disagreement $n \geq 6$). This talk: high energy limit (Regge limit) of BDS formula (JB, Lipatov, Sabio Vera): Four-point function:



All order gluon trajectory function, vertex function.

Comparison with Veneziano amplitude $B_4(s, t)$.

Five, six point functions:



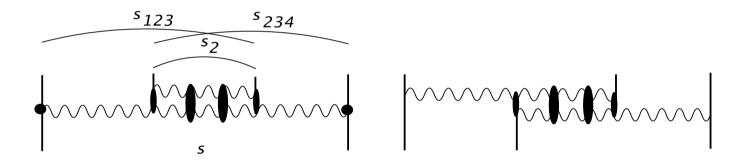
Same trajectory, vertex function, production vertex:

all seems to be consistent. But for $n \ge 6$:

Problem with the analytic structure:

scattering amplitudes = functions of several complex-valued variables: Steinmann relations

Comparison with leading-log calculations in QCD (JB, Lipatov, Sabio-Vera): disagreement for $2 \rightarrow 4$, $3 \rightarrow 3$, ...: piece is missing (beyond one loop): known since 1980

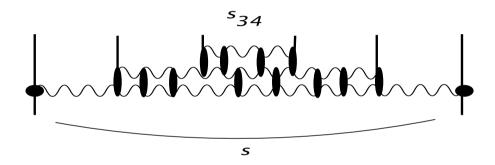


Visible in energy discontinuity or in another physical region: $s, s_2 > 0, s_{123}, s_{234} < 0$:

Recent verfication through comparison with exact two-loop calculation (Schabinger)

Special feature of this extra piece: integrability.

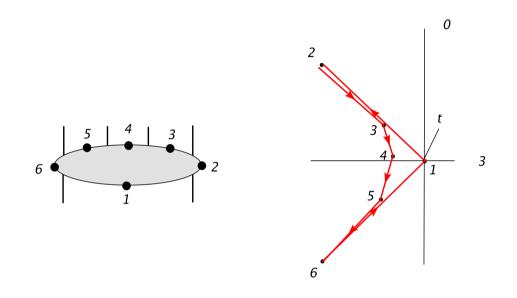
Go to multi-leg amplitudes n > 8, e.g.



This Regge-cut piece, again, is visible in (double) energy discontinuities or in special physical regions. Dependence upon s_{34} :

$$A_8 \sim s_{34}^{-E_3}$$
, where $H_{3,open}\psi = E_3\psi$

is the lowest energy of the BKP Hamiltonian describing the rapidity evolution in the t_3 channel. In the planar limit the t_3 channel is in a octet state: $H_{3,open}$ is integrable (\rightarrow Lipatov). On the string side: High energy limit contours on the string side have characteristic spike



Surfaces not known fo general n.

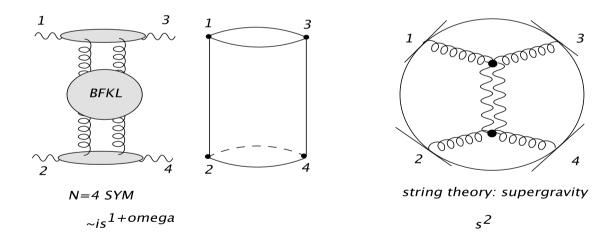
Analytic continuation of kinematic regions \leftrightarrow relates different contours and minimal surfaces. Study of these deformations might provide some guidance.

Task: correct the BDS formula.

The Pomeron in AdS/CFT

The 'Hard Pomeron': $\gamma^* \gamma^*$ -scattering in QCD In N = 4 SYM use R-currents (global SU(4) symmetry) as substitute for the photon. Elastic scattering:

 $< R_{\mu_1}(x_1)R_{\mu_2}(x_2)R_{\mu_3}(x_3)R_{\mu_4}(x_4) >$



Basic message: BFKL in N = 4 SYM is dual to the graviton in AdS_5

In more detail: on the weak coupling side the BFKL amplitude

$$A(s,t) = is \int rac{d\omega}{2\pi i} \left(rac{s}{kk'}
ight)^{\omega} \Phi_1(Q_A^2,k,q-k) \otimes G_{\omega}(k,q-k;k',q-k') \otimes \Phi_2(Q_B^2,k',q-k')$$

LO impact factors for *R*-currents (JB,Mischler,Salvadore; Balitsky), NLO characteristic BFKL function (Lipatov et al):

$$G_{\omega}(k, q-k; k', q-k') \sim \frac{1}{\omega - \chi(n, \nu)}$$

Connection between small x-limit and short distance limit (DIS): leading twist anomalous dimension near $\omega = j - 1 \approx 0$

$$A(s,t=0) \sim \frac{is}{Q^2} \int \frac{d\omega}{2\pi i} \left(\frac{s}{Q_1^2}\right)^{\omega} \int \frac{d\nu}{2\pi i} \left(\frac{Q_1^2}{Q_2^2}\right)^{i\nu+\omega/2} \Phi_1(n,\nu) \frac{1}{\omega - \chi(\nu,0)} \Phi_2(n,\nu)$$

The strong coupling side:

the leading term (in $1/\lambda$) is given by supergravity (Witten diagram): graviton exchange. Calculation (Kotanski et al) gives:

Fouriertransform, high energy limit, polarization vectors, helicity structure of the exchanged graviton:

$$\frac{2p_{2;\mu}p_{1;\mu'}}{s}\frac{2p_{2;\nu}p_{1;\nu'}}{s}$$

leads to

$$\mathcal{A}^{ ext{GR}}_{\lambda_1\lambda_2\lambda_3\lambda_4}(s,t) = s^2 \int dz_0 dw_0 \Phi_{\lambda_1\lambda_3}(|ec{p_1}|,|ec{p_3}|;z_0) \, \Sigma(|ec{p_1}+ec{p_3}|,z_0,w_0) \, \Phi_{\lambda_2\lambda_4}(|ec{p_2}|,|ec{p_4}|;w_0) \, .$$

Comparison with gauge theory side: 'Impact factors', integral over fifth coordinate analogous to transverse momentum.

Forward scattering:

$$\mathcal{A}_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}}^{\text{GR}}(s,t=0) = s^{2} \int_{0}^{\infty} dz_{0} z_{0}^{3} \Phi_{\lambda_{1}\lambda_{3}}(|\vec{p}_{1}|,|\vec{p}_{3}|;z_{0}) \\ \times \int_{0}^{\infty} dw_{0} w_{0}^{3} \Phi_{\lambda_{2}\lambda_{4}}(|\vec{p}_{2}|,|\vec{p}_{4}|;w_{0}) \frac{1}{2} G_{\Delta=2,d=0}(\hat{u})$$

with

$$G_{\Delta=2,d=0}(\hat{u}) = rac{1}{4w_0^2 z_0^2} (heta(w_0-z_0)z_0^4 + heta(z_0-w_0)w_0^4),$$

Limit of $Q_A^2 \gg Q_B^2$: dominant region close to the boundary (z_0 small, $r = 1/z_0$ large): 'graviton \leftrightarrow hard Pomeron' lives close to the boundary'.

Powers of $\ln Q_A^2/Q_B^2$, dependence upon polarization. beginning of OPE expansion?

Cannot see in Witten diagram: reggeization of the graviton. $j = 2 \rightarrow j = 2 - \frac{2}{\sqrt{\lambda}} + O(\lambda)$. More general (Lipatov et al, Polchinski et al): it exists function $j(\nu, \lambda)$

$$1+\chi(\nu,\lambda) < j(\nu,\lambda) < 2-\frac{4+\nu^2}{2\sqrt{\lambda}}+\dots$$

Diffusion in $\ln z$ (Polchinski et al.).

Result for $\gamma^*\gamma^*$ scattering

- intercept: function $j(\nu, \lambda)$ interpolates between weak and strong coupling: $1 < j(\nu, \lambda) < 2$. We know the first two corrections for $\lambda \to 0$, first correction at $\lambda \to \infty$. Connection with anomalous dimension.
- impact factor: we know the first term at $\lambda \to 0$, the first term at $\lambda \to \infty$.

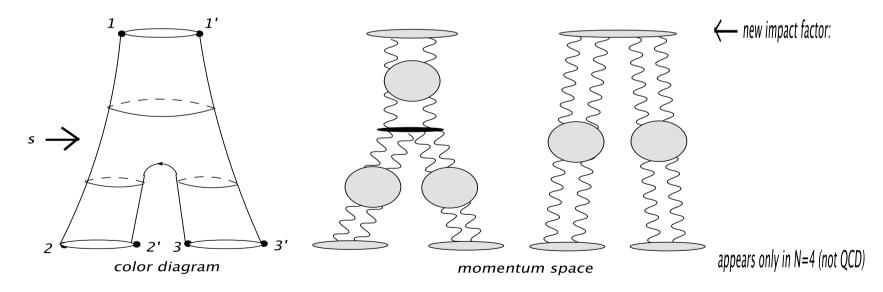
Wanted: represention which can be used for both weak and strong coupling (Cornalba et al, Banks et al.).

What next: unitarization, integrability

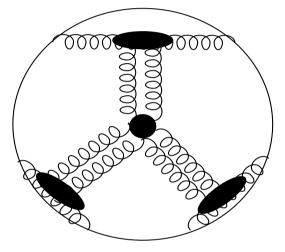
A.Unitarization:

problem worse than BFKL: single graviton $\sim s^2$, double graviton $\sim s^3$,... Need to go beyond planar (large- N_c limit): decided to study six-point function.

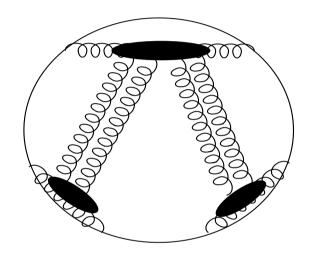
On the gauge theory side: pair-of pants topology:



On the string theory side:



triple graviton vertex vanishes: need string theory calculation



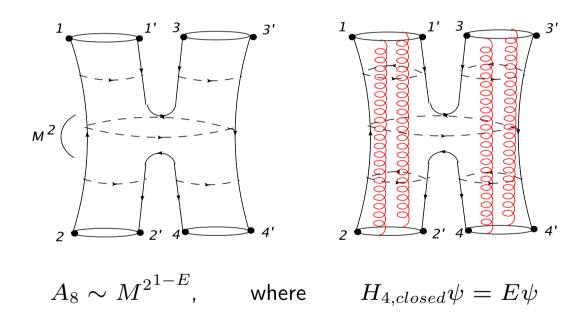
compute new impact factor (leading order in $1/\lambda$)

B.Integrability:

Important feature of BFKL: generalize from $2 \mbox{ to } n>2 \mbox{ gluons,}$

(LO) Hamiltonian of BKP states is integrable for large N_c .

Where to find large- N_c BKP states: in multi-leg amplitudes, e.g. eight point correlator for $4 \rightarrow 4$:



E is the lowest eigenvalue of the energy spectrum of the 4 gluon BKP Hamiltonian (closed chain).

Conclusions

We are only at the beginning of exciting investigations.

- Planar amplitudes: 'Islands' of integrability BDS formula: Regge limit should help to get correct the expression
- Pomeron: 'Hard' Pomeron, interpolation from strong to weak coupling.

To work on:

- correct the BDS formula
- What is the role of integrability in high energy scattering on the string side?
- Unitarization? 'Soft' Pomeron needs modelling, dual analogue of QCD.

Dear Al,

best wishes

and many more happy years!