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Why eA physics with J/y's?:

Because:

From the perspective of QCD the physics of nuclei is
poorly understood

- what gives proton or neutron its mass and size,
- compressibility of nuclear matter
why nuclear radius grows with A!/3
(atomic radius remains ~ constant with Z)
why quarks and gluons contained in
different nucleons are not merging info a common
bag in a nucleus
(common bag = delocalization = energy saving)

Lattice Gauge Theory has proven that QCD is the correct
theory of strong interactions at large distances

Its application to hadronic interactions are only now being
developed



Nuclei are difficult to investigate because of a lack of proper tools to view
inside nuclei
electrons can only see the electric charge distribution
protons are not simple probes

The novel probe to investigate nuclei: Small quark-antiquark color dipole.

In leading order QCD a small dipole interacts with the nucleus by the
exchange of two gluons. Both gluons have high transverse momenta but the
net momentum transfer to the nucleus can be small.
Therefore,the reaction leaves frequently the target intact.




dipole life time = l/mpx > 20 to 2000 fm, for x2 to x4

X

| -z {
(1-z)
y:e: ‘I—f — = y:s: y\ f’ ) ‘ = J/lr’/ (D ,D
X X s .l‘/
b

Ly * : édgv*p _do - .
p}otp = f [\ ¥ qz,‘P(' Optical Theorem > d;M ~ f v dT"bqoqq‘Pe oA |2
do _
i~ o xg (W T(b)

The same, universal, gluon density describes
the properties of many reactions measured at HERA:

F, . inclusive diffraction

exclusive J/Psi, Phi and Rho production
DVCS, diffractive jets
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Extracting Proton Shape using dipoles
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J/vy as a probe of proton and nuclei

Ideal probe:
large photoproduction cross sections,

easy detection by ee or pu decay channels

small width = well separated from background
quark dipole annihilates into leptons

J/y dipole interacts only by 2g exchange at low x
process is well understood in QCD



J/y p; resolution at EIC or LHeC

J/psi p; is determined from pr of ee or uu decay pair
pr resolution for J/psi - O(1) MeV for a TPC with 2m radius

no measurement of a proton or ion momentum necessary
beam electron p; < 1 MeV (0.2 with cooling MeV) for E. < 5 GeV

scattered electron can be easily detected in the forward detector



Proton shapes from exclusive J/v
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Modification by Bartels,
Golec-Biernat, Peters
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The size of interaction region B for various VM
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Proton radius

v p — J/y p (photoproduction)
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the gluonic proton radius is smaller than the quark radius




Expected EIC improvements

Hera diffractive measurements were made with the luminosity
of O(100) pb! and the t-range O - 0.6 GeV?

EIC measurements can reduce the errors by a factor of ~10
and extend the t-range to 2 GeV?

» precise measurement of a’ becomes possible,
determine the properties of the hard, BFKL-Pomeron,

i.e; energy dependence of the Pomeron trajectories

physics goal: Pomeron-6Graviton correspondence



X-sections for nuclear J/yA production

Conventional assumption: charmed dipole scatters on individual nucleons
Amplitude for scattering on a configuration {bi}:
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X-sections for eA => J/yA production
Fourier transform of the amplitude
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X-sections for eA => J/ A production
Incoherent scattering

Fourier transform the amplitude for the scattering on a configuration:
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Nuclear gluonic shapes
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- nucleus remains in the ground state

incoherent - nucleus gets excited or breaks up,
no additional particles are produced



Experimental signature of the incoherent production

Break up: large rapidity gap with some particles in the forward neutron and
proton detectors
Excited state without breakup: low energy photons (electrons) in the
final state

Experimental signature of the coherent production

large rapidity gap with no particles in the forward em, neutron or
proton detectors

Breakup reactions can be well identified by the forward proton and

neutron detectors,
Excited states without breakup can be partly identified by the forward

em calorimeters.
It remains to be determined how well excited and coherent states can be

(statistically) separated




Conclusions

We have an ideal tool to investigate at EIC the
gluonic structure of nuclear matter with a pure QCD probe

Gluonic radius of the proton is sizably smaller than the quark one
We can investigate the inner structure of nuclear matter by

observation of diffractive patterns emerging from densely packed
nuclei

We have a chance to solve the long standing puzzle; how strong
interactions form matter
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Dynamics of nuclear disintegration,
first attempt of a review, no claim to completeness

Based on
« the discussions with W. Scobel, Prof. Emeritus of Hamburg Univ.

« Review of "Quantum Molecular Dynamics” by J. Aichelin,
Phys. Reports 202, p233 (1991)

 papers by Niita et al. Phys Rev C 52, p2620 (1995)
Marcusi et al. Phys Rev C 79, 014614 (2009)

physics interest: understanding of fission
compressibility of nuclear matter,
supernova explosions, giant resonances
heavy ion reactions
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Observation of Cold Scission of Highly Excited Fissioning Nuclei
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Quantum Molecular Dynamics
J. Aichelin, Phys. Reports.

Microscopical dynamical n-body theory:
Starting from the n-body Schroedinger eq. time evolution determined
from the Wigner transform of the n-body transition matrix.

Several simplified assumptions:
- scattering of the nucleons can be treated as if they are free
- interference between two different sequences vanishes

- replacement of the real part of the transition matrix by an eff.
interaction

eff. interaction = local (Skyrme type) + Yukava + Coulomb



PoldQdE (mblsr MeV)

PHYSICAL REVIEW C

VOLUME 52, NUMBER 5

NOVEMBER 1995

Analysis of the (N,xN') reactions by quantum molecular dynamics plus statistical decay model
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FIG. 10. Neutron energy spec-
tra for the reaction p (113 MeV)
+%Fe at different laboratory
angles as indicated in the figure.
The x axis is plotted in a logarith-
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hand side. The solid histograms
are the results of QMD + SDM
and the open circles with error
bars denote the experimental data
taken from Ref. [26]. The dashed
histograms denote the results of
NUCLEUS [27] at the 150° labora-
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Quantum Molecular Dynamic,

J. Aichelin
Initial Wigner densities:

n 1 o & 5 Py

[ [ exp(—( =7 2L exp(-(5, = F)* - 2L)
i=1

rio's randomly chosen in a sphere of radius 1.12 Al/3

but rejected if (rio-rjo) < 1.5 fm

local Fermi momenta pr(rio) determined from the effective potential energy
of particle i.

choose pio's randomly between O and pr(rio),

Reject all configuration with (7, — ?;0)2 (p, - ﬁio)z <d_.

» Stable nucleus with proper size, right compressibility, binding energies etc
Nucleus is similar to a lattice with wave function located around the sites
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Coherent J/v production

Study of the gluonic nuclear radius and density

Incoherent J/vy production

Study of gluonic two body correlations

Measurement of the t-distribution correlated with the number
and momenta of the breakup neutrons and protons can become
a new source of information about the gluonic nuclear forces

example: 1 MeV gluon kick vs n neutrons, n protons with pr
10 MeV gluon kick g -
100 Mev gluon kick . “

A




Saturation

Degree of saturation is characterized by the size of the dipole, rs
which, at a given x, starts to interact multiple times
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Distribution of J/y dipole sizes
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J/psi p; resolution at EIC or LHeC

J/psi p; is determined from pr of ee or uu decay pair
pr resolution for J/psi - O(1) MeV for a TPC with 2m radius

no measurement of a proton or ion momentum necessary

beam electron p; < 1 MeV (0.2 with cooling MeV) for E. < 5 GeV
scattered electron can be easily detected in the forward detector



Acceptance and X-sec for elastic J/y photoproduction
at eRHIC, E, = 100 GeV
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Measurement of momenta of J/y decay muons

Expected resolution of drift chambers:
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. outer radius R =2 m

. solenoidal field B=35T

gas density Xy = 450 m
point resolution ¢ = 100 pm

measurement N = 200 points.

< TPC parameters U
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Detector concept
Caldwell, Kowalski
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