Factorization in the non-linear small-x regime of QCD

Columbia University, New York, October 2009

François Gelis CEA, IPhT

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Outline

- **1** Gluon saturation at small x
- **2** Factorization in Deep Inelastic Scattering
- **3** Nucleus-Nucleus collisions

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

1 Gluon saturation at small x

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Pactorization in Deep Inelastic Scattering

Leading Order Next to Leading Order Leading Log resummation

O Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Gluon saturation

- assume that the projectile is big, e.g. a nucleus, and has many valence quarks (only two are represented)
- on the contrary, consider a small probe, with few partons
- at low energy, only valence quarks are present in the hadron wave function

François Gelis

œ

Gluon saturation

Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

- when energy increases, new partons are emitted
- the emission probability is $\alpha_s \int \frac{dx}{x} \sim \alpha_s \ln(\frac{1}{x})$, with x the longitudinal momentum fraction of the gluon
- at small-x (i.e. high energy), these logs need to be resummed

François Gelis

Gluon saturation

Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

 as long as the density of constituents remains small, the evolution is linear: the number of partons produced at a given step is proportional to the number of partons at the previous step (BFKL)

François Gelis

 \overline{cer}

Gluon saturation

Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Summary

4

- eventually, the partons start overlapping in phase-space
- parton recombination becomes favorable
- after this point, the evolution is non-linear: the number of partons created at a given step depends non-linearly on the number of partons present previously

François Gelis

Gluon saturation

Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Criterion for gluon recombination

Gribov, Levin, Ryskin (1983)

Number of gluons per unit area :

$$ho \sim rac{\mathbf{x} \mathbf{G}_{\mathsf{A}}(\mathbf{x}, \mathbf{Q}^2)}{\pi R_{\mathsf{A}}^2}$$

Recombination cross-section :

$$\sigma_{gg \to g} \sim \frac{\alpha_s}{Q^2}$$

Recon

$$Q_s^2 \sim \frac{\alpha_s x G_A(x, Q_s^2)}{\pi R_A^2} \sim A^{1/3} \frac{1}{x^{0.3}}$$

Note: At a given energy, the saturation scale is larger for a nucleus (for $A = 200, A^{1/3} \approx 6$)

François Gelis

Gluon saturation Gluon evolution Saturation domain

Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

nbination happens if
$$ho \sigma_{gg
ightarrow g} \gtrsim 1$$
, i.e. $Q^2 \lesssim Q_s^2$, with
 $Q_s^2 \sim \frac{\alpha_s x G_A(x, Q_s^2)}{\pi R_A^2} \sim A^{1/3} \frac{1}{x^{0.3}}$

Saturation domain

François Gelis

Multiple scatterings

• Power counting :

$$\frac{2 \text{ scatterings}}{1 \text{ scatterings}} \sim \frac{Q_s^2}{M_1^2} \quad \text{with} \quad Q_s^2 \sim \alpha_s \frac{xG(x, Q_s^2)}{\pi R^2}$$

 When this ratio becomes ~ 1, all the rescattering corrections become important

 \triangleright one must resum all $\left[Q_s/P_{\perp}\right]^n$

These effects are not accounted for in DGLAP or BFKL

François Gelis

Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Multiple scatterings

Single scattering :

\triangleright 2-point function in the projectile \triangleright gluon number

François Gelis

œ

Gluon saturation Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Multiple scatterings

François Gelis

œ

Gluon saturation Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

CGC: Degrees of freedom

CGC = effective theory of small x gluons

The fast partons (k⁺ > Λ⁺) are frozen by time dilation
 ▷ described as static color sources on the light-cone :

 $J^{\mu} = \delta^{\mu +} \rho(\boldsymbol{x}^{-}, \boldsymbol{\vec{x}}_{\perp}) \qquad (0 < \boldsymbol{x}^{-} < 1/\Lambda^{+})$

 Slow partons (k⁺ < Λ⁺) cannot be considered static over the time-scales of the collision process
 ▷ they must be treated as standard gauge fields

Eikonal coupling to the current J^{μ} : $A_{\mu}J^{\mu}$

The color sources ρ are random, and described by a distribution functional W_{Λ+}[ρ], with Λ⁺ the longitudinal momentum that separates "soft" and "hard"

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

CGC: renormalization group evolution

Evolution equation (JIMWLK) :

$$\frac{\partial \boldsymbol{W}_{\Lambda^{+}}}{\partial \ln(\Lambda^{+})} = \mathcal{H} \quad \boldsymbol{W}_{\Lambda^{+}}$$
$$\mathcal{H} = \frac{1}{2} \int_{\boldsymbol{\vec{x}}_{\perp}, \boldsymbol{\vec{y}}_{\perp}} \frac{\delta}{\delta \alpha(\boldsymbol{\vec{y}}_{\perp})} \eta(\boldsymbol{\vec{x}}_{\perp}, \boldsymbol{\vec{y}}_{\perp}) \frac{\delta}{\delta \alpha(\boldsymbol{\vec{x}}_{\perp})}$$

where $-\partial_{\perp}^2 \alpha(\vec{x}_{\perp}) = \rho(1/\Lambda^+, \vec{x}_{\perp})$

- $\eta(\vec{x}_{\perp}, \vec{y}_{\perp})$ is a non-linear functional of ρ
- This evolution equation resums all the powers of $\alpha_s \ln(1/x)$ and of Q_s/p_{\perp} that arise in loop corrections
- This equation simplifies into the BFKL equation when the source *ρ* is small (one can expand *η* in powers of *ρ*)

François Gelis

Gluon saturation Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

François Gelis

Gluon saturation at small x

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Pactorization in Deep Inelastic Scattering

Leading Order Next to Leading Order Leading Log resummation

O Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Inclusive DIS at Leading Order

• CGC effective theory with cutoff at the scale Λ_0^- :

 At Leading Order, DIS can be seen as the interaction between the target and a qq fluctuation of the virtual photon :

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order

Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Inclusive DIS at Leading Order

• Forward dipole amplitude at leading order:

 \triangleright at LO, the scattering amplitude on a saturated target is entirely given by classical fields

• Note: the $q\bar{q}$ pair couples only to the sources up to the longitudinal coordinate $z^+ \lesssim (xP^-)^{-1}$. The other sources are too slow to be seen by the probe

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order

Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Inclusive DIS at NLO

 Consider now quantum corrections to the previous result, restricted to modes with Λ₁⁻ < k⁻ < Λ₀⁻ (the upper bound prevents double-counting with the sources):

At NLO, the qq dipole must be corrected by a gluon, e.g. :

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order

Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Inclusive DIS at NLO

fields sources \rightarrow $\Lambda_{I}^{-} \Lambda_{0}^{-} P^{-} k^{-}$ $\delta T_{\rm NLO} T_{\rm LO}$

 At leading log accuracy, the contribution of the quantum modes in that strip is :

$$\delta \boldsymbol{T}_{_{\rm NLO}}(\boldsymbol{\vec{x}}_{\perp}, \boldsymbol{\vec{y}}_{\perp}) = \ln \left(\frac{\Lambda_0^-}{\Lambda_1^-} \right) \ \mathcal{H} \ \boldsymbol{T}_{_{\rm LO}}(\boldsymbol{\vec{x}}_{\perp}, \boldsymbol{\vec{y}}_{\perp})$$

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order

Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Inclusive DIS at NLO

These NLO corrections can be absorbed in the LO result,

$$\left\langle \boldsymbol{T}_{\rm lo} + \delta \boldsymbol{T}_{\rm nlo} \right\rangle_{\Lambda_0^-} = \left\langle \boldsymbol{T}_{\rm lo} \right\rangle_{\Lambda_1^-}$$

provided one defines a new effective theory with a lower cutoff Λ_1^- and an extended distribution of sources $W_{\Lambda_1^-}[\rho]$:

(JIMWLK equation for a small change in the cutoff)

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order

Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Inclusive DIS at Leading Log

• Iterate the previous process to integrate out all the slow field modes at leading log accuracy:

Inclusive DIS at Leading Log accuracy

$$\sigma_{\gamma^*T} = \int_0^1 dz \int d^2 \vec{r}_{\perp} |\psi(\boldsymbol{q}|z, \vec{r}_{\perp})|^2 \sigma_{\text{dipole}}(\boldsymbol{x}, \vec{r}_{\perp})$$

$$\sigma_{\text{dipole}}(\boldsymbol{x}, \vec{r}_{\perp}) \equiv 2 \int d^2 \vec{\boldsymbol{X}}_{\perp} \int [\boldsymbol{D}\rho] W_{\boldsymbol{X}P^-}[\rho] \boldsymbol{T}_{\text{LO}}(\vec{\boldsymbol{x}}_{\perp}, \vec{\boldsymbol{y}}_{\perp})$$

 One does not need to evolve down to Λ⁻ → 0: the DIS amplitude becomes independent of Λ⁻ when Λ⁻ ≤ xP⁻

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

François Gelis

Gluon saturation at small x

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Pactorization in Deep Inelastic Scattering

Leading Order Next to Leading Order Leading Log resummation

3 Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collision

Stages of AA collisions Energy-Momentum tensor Glasma fields

Stages of a nucleus-nucleus collision

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Summary

- The Color Glass Condensate provides a framework to describe nucleus-nucleus collisions up to a time $\tau \sim Q_s^{-1}$

Reminder on hydrodynamics

Equations of hydrodynamics :

$$\partial_{\mu}T^{\mu\nu}=0$$

Additional inputs :

EoS: $p = f(\epsilon)$, Transport coefficients: η, ζ, \cdots

• Required initial conditions : $T^{\mu\nu}(\tau = \tau_0, \eta, \vec{x}_{\perp})$

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Initial conditions from CGC: power counting

Dilute regime : one parton in each projectile interact

François Gelis

Multiple scatterings Color Glass Condensate

Factorization in DIS

Next to Leading Order Leading Log resummation

Stages of AA collisions Energy-Momentum tensor

Initial conditions from CGC: power counting

- Dilute regime : one parton in each projectile interact
- Saturated regime : multiparton processes become crucial

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Initial conditions from CGC: Leading Order

• In the saturation regime, $\rho_{1,2} \sim g^{-1}$, and we have the following expansion for $T^{\mu\nu}$:

$$T^{\mu\nu} = \frac{\mathsf{Q}_s^4}{g^2} \left[c_0 + c_1 \, g^2 + c_2 \, g^4 + \cdots \right]$$

• The Leading Order contribution is given by classical fields :

$$T_{\rm LO}^{\mu\nu} \equiv c_0 \frac{\mathsf{Q}_{\rm s}^4}{g^2} = \frac{1}{4} g^{\mu\nu} \, \mathcal{F}^{\lambda\sigma} \mathcal{F}_{\lambda\sigma} - \mathcal{F}^{\mu\lambda} \mathcal{F}^{\nu}{}_{\lambda}$$

with $\underbrace{\left[\mathcal{D}_{\mu}, \mathcal{F}^{\mu\nu}\right] = J^{\nu}}_{\text{Yang-Mills equation}}$, $\lim_{t \to -\infty} \mathcal{A}^{\mu}(t, \vec{\mathbf{x}}) = 0$

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Initial conditions from CGC: Leading Log resummation

- The previous power counting implicitly assumes that the coefficients *c_n* are numbers of order one. However, large logarithms of the CGC cutoff appear at NLO
- Like in DIS, the coefficients of the logs are given by the action of the JIMWLK Hamiltonian on the LO observable:

$$\delta T_{_{\rm NLO}}^{\mu\nu} = \left[\ln \left(\frac{\Lambda_0^-}{\Lambda_1^-} \right) \, \mathcal{H}_1 + \ln \left(\frac{\Lambda_0^+}{\Lambda_1^+} \right) \, \mathcal{H}_2 \right] \, T_{_{\rm LO}}^{\mu\nu}$$

$$\left\langle \boldsymbol{T}^{\mu\nu}(\tau,\boldsymbol{\eta},\vec{\boldsymbol{x}}_{\perp})\right\rangle_{\text{LLog}} = \int \left[\boldsymbol{D}\rho_{1} \ \boldsymbol{D}\rho_{2}\right] W_{1}\left[\rho_{1}\right] W_{2}\left[\rho_{2}\right] \underbrace{\boldsymbol{T}^{\mu\nu}_{\text{LO}}(\tau,\vec{\boldsymbol{x}}_{\perp})}_{\text{for fixed }\rho_{1,2}}$$

(FG, Lappi, Venugopalan (2008))

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

• The duration of the collision is very short: $\tau_{\rm coll} \sim E^{-1}$

François Gelis

Gluon saturation

Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Next to Leading Order Leading Log resummation

Stages of AA collisions Energy-Momentum tensor

- The duration of the collision is very short: τ_{coll} ~ E⁻¹
- The logarithms we want to resum arise from the radiation of soft gluons, which takes a long time
 it must happen (long) before the collision

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

- The logarithms we want to resum arise from the radiation of soft gluons, which takes a long time
 it must happen (long) before the collision
- The projectiles are not in causal contact before the impact
 b the logarithms are intrinsic properties of the projectiles, independent of the measured observable

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

(all propagators retarded)

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

• Note : this would not work if the graphs were made of Feynman propagators instead of retarded ones François Gelis

Correlations in η and \vec{x}_{\perp}

 The factorization valid for (*T^{μν}*) can be extended to multi-point correlations :

$$\left\langle T^{\mu_{1}\nu_{1}}(\tau,\eta_{1},\vec{\mathbf{x}}_{1\perp})\cdots T^{\mu_{n}\nu_{n}}(\tau,\eta_{n},\vec{\mathbf{x}}_{n\perp})\right\rangle_{\scriptscriptstyle \mathrm{LLog}} = = \int \left[D\rho_{1} D\rho_{2} \right] W_{1}[\rho_{1}] W_{2}[\rho_{2}] \times T^{\mu_{1}\nu_{1}}_{\scriptscriptstyle \mathrm{LO}}(\tau,\vec{\mathbf{x}}_{1\perp})\cdots T^{\mu_{n}\nu_{n}}_{\scriptscriptstyle \mathrm{LO}}(\tau,\vec{\mathbf{x}}_{n\perp})$$

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Gluon saturation

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Summary

 \triangleright For each $\rho_{1,2}$, solve the Yang-Mills equations to get the classical field \mathcal{A}^{μ} , then compute $\mathbf{T}_{L0}^{\mu\nu}$ from \mathcal{A}^{μ} . By sampling the distributions $W_{1,2}[\rho_{1,2}]$, one gets all the correlations at leading log accuracy

Initial classical fields, Glasma

Lappi, McLerran (2006)

• Immediately after the collision, the chromo- \vec{E} and \vec{B} fields are purely longitudinal and boost invariant :

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Glasma flux tubes

• The initial chromo- \vec{E} and \vec{B} fields form longitudinal "flux tubes" extending between the projectiles:

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

- The color correlation length in the transverse plane is Q_s⁻¹
 ⊳ flux tubes of diameter Q_s⁻¹, filling up the transverse area
- The correlation length in the η direction is Δη ~ α_s⁻¹
 ⊳ long range rapidity correlations expected in the data

Importance of initial rapidity correlations

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields

Summary

Long range rapidity correlations must be created early

$$t_{\text{correlation}} \leq t_{\text{freeze out}} e^{-\frac{1}{2}|y_A - y_B|}$$

 \triangleright it is impossible to explain the long range η -correlation seen at RHIC by phenomena that occur later than this limit (see R. Venugopalan's talk)

Summary

- Gluon saturation is enhanced in nuclei, and can be reached at higher *x* (compared to nucleons)
- Saturation plays an important role in the description of the initial stages of nucleus-nucleus collisions
- In the saturated non-linear regime, there exist some universal distributions $W[\rho]$ that describe the dense projectiles both in DIS and AA collisions
 - Resums the logs of \sqrt{s} at leading log accuracy
 - Applies to sufficiently inclusive observables
 - · Causality plays an important role in this factorization
 - Ordinary k_t-factorization is broken in AA collisions
- Outstanding issue in AA collisions: the energy-momentum tensor obtained at early times is far from local equilibrium. (How) does thermalization occur?

François Gelis

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Stages of AA collisions Energy-Momentum tensor Glasma fields