Factorization — and some comments

Alfest, Columbia Univ., Oct. 25, 2009

George Sterman, Stony Brook

e A bit of physics in tribute on a birthday.

. “ From the Mueller files” and factorization
Il. Factorization: the classical story
1. Some recent thoughts on factorization in pQCD

IV. Glancing back and looking forward
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e From the Mueller files: groundbreaking work that evolved into
the idea of factorization at the cusp of the standard model.

e (In the spirit of the season ...) loading the bases for the
home run of asymptotic freedom:
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A technique introduced by Symanzik is used to derive a series of equations obeyed order
by order in perturbation theory by the structure functions W; and v W, entering the cross
section for inelastic electron scattering. These equations relate the ¢, v, and coupling-
constant dependence of W; and vW, in a manner reminiscent of the renormalization-group
results of Gell-Mann and Low. The equations are used to compute the leading logarithmic
contribution to » W, in a theory of fermions coupled to pseudoscalar particles and a theory
of fermions coupled to vector particles.

1. INTRODUCTION

The simple scaling behavior® of the structure functions W, and vW, (Ref. 2) observed? for ¢2 and mv = 2
BeV? has caused considerable interest in the large ¢2 and v dependence of the matrix element
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where |p, s) is a single nucleon state with four-momentum p and z component of spin S, Ju(x) is the usual
electromagnetic current.® In this paper we investigate the behavior of W, and vW, for large ¢ and fixed
w=2mv/q* as computed to arbitrary order in the perturbation expansion of a renormalizable field theory.

As is well known,® the large ¢* and v behavior of the matrix element (1) can be determined from the sin-
gularity of the product J,(x)J,(0) on the light cone, x*=0. We begin with Wilson’s operator expansion®’
for the short-distance limit of the product J;K% (6 + I, G (=x + )):
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The missing fixed point ...

E'P(q® results if we assume that g, is a simple
root of B(g) and that A (g) and B (g) are regu-
lar at g,. As is shown in Appendix D, these as-
sumptions when combined with Eqs. (79) and (80)
imply a simple power behavior for E ‘¥ (4?).
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¢ Opening the door to the final state ...

PHYSICAL REVIEW D VOLUME 9, NUMBER 4 15 FEBRUARY 1974

Inclusive annihilation processes in ¢* field theory
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(Received 31 August 1973)

The process ¢(g) — ¢(p) + anything, the process in ¢* theory analogous to e* + ¢~ —hadron
+ anything, is examined in ¢? field theory for large values of g2. Some heuristic arguments
astothe strength of mass singularities in a particular two-particle irreducible amplitude
make it possible to argue that a light-cone-like expansion exists when g2 —, This light-cone
expansion has virtually all of the properties of the usual light-cone expansion except that it is
not an expansion in terms of invariant amplitudes associated with local operators. In case
¢* theory has an eigenvalue, 8(g.) = 0, the moments of the annihilation cross section will
have a power behavior in ¢%, a power unrelated to the powers of g2 appearing in any deeply
inelastic scattering process. Also, at an eigenvalue the average multiplicity of particles
produced, a quantity governed by the Callan-Symanzik equation in this theory, grows like

a fractional power of g?.
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¢ Including the factorized “distribution function” in a picture
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FIG. 1. An illustrati;)n of Eq. (5).
ogous to amplitudes which occur in studies of ments of T (Refs. 4 and 26) utilized the light-cone
deeply inelastic electron scattering. Further, de- expansion and thus cannot be easily generalized.
fine the completely off-shell amplitude
A. Integral equation and diagonalization
(%, p+9,2%) ="f dixd’y d’z e'exT i) : :
An integral equation for 7 can be given in terms
x (T () ) T($(0)p (2))), (;/f. a two-particle irreducible kernel, the potential
X [afp*) ARG ®)]™ () |
F F ’ T(pzﬁp'q,qz)zv(Pz’p'q, qZ)\
where A is the full, renormalized propagator for _
the ¢ field, and T denotes the anti-time-ordered + f d*k T(p%, p -k, B AN
product. Now, when ¢? and p? are below their A
thresholds , XV, kq,q%). (5)
diqe. . oMUh2 herr AY=2Tm T(H2 her n?)

e Produced hadron g only traces its lineage back to a single
“ancestor,” k. All the rest of history is forgotten (the blob
on the left). This is the essence of factorization.
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e And a little later its evolution ...
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Cut vertices and their renormalization: A generalization of the Wilson expansion
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Department of Physics, Columbia University, New York, New York 10027
(Received 13 July 1978)

Cut vertices, a generalization of matrix elements of composite operators, are introduced. Their
renormalization is discussed. The Bogolubov-Parasiuk-Hepp-Zimmermann method of renormalization of cut
vertices allows one to obtain a generalization of the Wilson expansion where cut vertices multiplied by
singular functions appear rather than local operators times singular functions. A Callan-Symanzik equation
for the moments of the structure function in e ¥ + e ~—>hadron (p) 4 anything is derived. This equation is
valid to all orders of perturbation theory in both gauge and nongauge theories. Examples of renormalization
through the two-loop level are given.

p+k b+k
ka ka
P p
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e Here Al cites advances in understanding factorization in gauge
theories. How is factorization consistent with long-range forces?
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Il. Factorization as a classical story

e Its physical basis in hadronic collisions

@:?D)}a

-A= ¢ft’-x, wé _ ,BCt,

e Why a classical picture isn’t far-fetched ...

The correspondence principle is the key to
to IR divergences.

An accelerated charge must produce classical radiation,

and an infinite numbers of soft gluons are required
to make a classical field.
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e Transformation of a scalar field:

q —_—
(zF +23)1/2

1o oI\ q
¢(£B) — (CB%—I—’)’ZAZ)l/Z

P(x) =

From the Lorentz transformation:
3 = v(Bct’ — x§) = —vA.

Closest approach is at A =0, i.e. t/ = Blcazg .

The scalar field transforms “like a ruler’: At any fixed
A # 0, the field decreases like 1/~v = |1 — 32.

Why? Because when the source sees a distance =3,
the observer sees a much larger distance.
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x,y,z, 7/ l_X"V"Z'[
A= cBt'-x;
field x frame x’' frame

scalar I%I W
gauge (0) @)= A = e

field strength E3(x) = ﬁ Ej(x') = M—lﬁw
Gauge fields : E3 ~ ~°, E3 ~~7?

e The “gluon” A is enhanced, yet is a total derivative:

s,
AP = a, In (A(t',25))+ 01 —8) ~ A™

/
T

e The “large” part of A* can be removed by
a gauge transformation!
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e The “force” E field of the incident particle does not
overlap the “target” until the moment of the scattering.

e “Advanced” effects are corrections to the total derivative:

2
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e Power-suppressed! These are corrections to factorization.

e At the same time, a gauge transformation also induces
a phase on charged fields:

q(z) = q(x) e

Cancelled if the fields are well-localized < o inclusive

tIn(A)
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e Initial-state interactions decouple from hard scattering

e Summarized by multiplicative factors: the parton distributions

e But what about cross sections where we observe specific
particles in the final state? Single hadrons, dihadron
correlations, etc? Why does an outgoing hadron only know
about a cut vertex?
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¢ Much of the same reasoning holds:

@< @Q@ N

X; < Bct

e Subtle but important difference: A changes sign in the final
state.

e Then the gauge function in In(A) gets an imaginary part.
o g(z) = g(x) e*™(A) no longer a pure phase.
e Mismatch between initial- and final-state interactions.

¢ Indicates physical effects in the final state.
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e Still cancels at high pr for single hadrons, but not in general
for distributions of momentum pairs.

But for single-particle inclusive ...

Interactions after the scattering are too late to affect
large momentum transfer, creation of heavy particle, etc.



ll11. Factorization: some recent thoughts
e The ongoing saga in brief:
The late seventies: classifying soft and collinear singularities

The mid eighties: cancelling soft gluons

— Light-cone ordered forms for amplitudes (viz. Koplik and

Mueller) H is the hard-scattering — defines initial- and final
states.

— Separates amplitudes M at fixed transverse momenta into

initial and final states (s; = z;c; k7 ./2k;, £ a source of
soft gluons):

M (pt) = /qé’(f '{das b)) T :

1< H ( =y qa S; + 7’6)

1
X I —
i>H (spejay + kg — 55 + i€)
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e The big issue: single diagrams in covariant perturbation the-
ory that include linear superpositions of initial- and final-state
gluon exchanges (“Glauber” or “Coulomb” gluons).

n®.

./, A
“initial” . “final”
There is no longer a single “phase” to eliminate both initial-

and final-state non-factoring guons.

The essential point: final state singularities cancel in the sum
over final states. So it’s really an initial-state phase.
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e And the past few years: revisiting (sometimes rediscovering)
the old arguments

— A renewed interest in the context of “soft-colinear effective
theories” [Bauer, Fleming, C. Lee, Rothstein, Stewart et al.]

— and extensions to factorization at fixed transverse momen-
tum

— Back to those Glauber/Coulomb gluons. [s. Mert aybat and 6s] OK,
they cancel, but what do they do before they cancel?



e “Causal identity”: Makes LC momentum integrals converge

(no “pseudo-collinear” subtractions necessary)

a=0 k= 1(—2 I{:_I_) = a—|—1 (z k:;_) o

LCOPT only for the Green lines; then at fixed k and k’:




e What's left over in the amplitude: phases for each spectator.

M(pa; {pe}) = (0|21 (0, —00) Cprf(pa) 81 (0, —o0)
X 1/ d2xq el W (x)0) W £ ({p 74 xe})
e with W ¢({p~¢,x¢}) a light-cone wave function,
e in (L) convolution with Wilson lines,
W (x;) = 1) (00, x4) B (x4, —00) .

e Perhaps a link to dipole-based pictures of hadron-hadron
scattering.



IV. Glancing back (with admiration) and looking forward

e What a turn-out!

¢ In recognition of a founding role in modern strong interaction
physics, seeing us through from Regge to gauge theory and,
who knows, to string pictures that combine them,

e and a key role in the evolving reengagment particle
and nuclear physics,

e for giving us so many ideas to build on, and for finding depths
in our ideas we didn’t know were there,



o for terrific ideas and terrific students that and who just keep
coming,

e all for as long as | can remember, and then some,

e and in tribute to the physics, to the encouragement
and the generosity,

e and for just generally showing us how to
do science with style ...



e Here's a toast to you, Al ...

e Happy birthday! ...and many, many more ...



e happy occasions for you and Julia ...




