

Optimization of the CLIC Positron Source

Yanliang Han^{1,2}, Andrea Latina², Daniel Schulte², Lianliang Ma^{1,2}

¹Shandong University ²CERN

Apr. 27th, 2018

Outline

- Introduction & Review
- 2 Motivation
- Subsystems
 - Target
 - AMD
 - Traveling Wave Structure
 - Injector linac
- Start-to-end Optimization
- Conclusion

- Introduction & Review
- 2 Motivation
- Subsystems
 - Target
 - AMD
 - Traveling Wave Structure
 - Injector linac
- Start-to-end Optimization
- Conclusion

Introduction

Layout of CLIC at 3 TeV stage

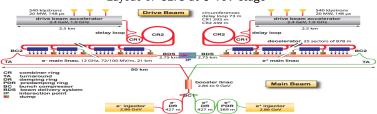
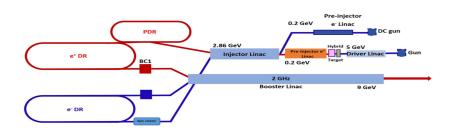



Table: Beam parameters at the entrance of pre-damping ring

Parameters	Value	
E [GeV]	2.86	
N	6.6×10^{9}	
n_b	312	
$\Delta t_b[ns]$	1	
$\epsilon_{x,y}[\mu m]$	7000	
σ_z [mm]	5.4	
σ_E [%]	4.5	
f _{rev} [Hz]	50	

Introduction - The positron source sketch

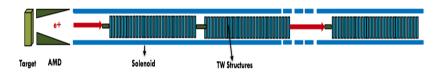


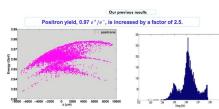
Figure: Schematic layout of the main beam injector complex

Review 3 TeV - CDR

Target parameters:

- Primary electron energy: 5 GeV
- \bullet Crystal thickness: 1.4 mm (0.4 χ_0)
- Distance: 2 m
- ullet Amorphous thickness: 10 mm (3 χ_0)
- The positron yield after AMD is 8.0

$$AMD - B(z) = \frac{B_0}{1+\mu z}$$


- $B_0 = 6 \text{ T}, \ \mu = 55 \text{m}^{-1}, \ L = 20 \text{ cm}$
- The positron yield after AMD is 2.1

Pre-injector

- Accelerating the positrons to 200 MeV
- First decelerating and then accelerating
- Inside the 0.5 Tesla solenoid
- The positron yield after pre-injector is 0.9

Injector Linac

- Accelerating the positron to 2.86 GeV
- A bunch compressor is needed before the injector
- The positron yield after injector linac is 0.7 (effective: 0.39)

- All positrons by 99 % are transported.
- All positrons are within 1% acceptance window of the pre-damping ring.

From BPM report by C. Bayar

Positron yield: 0.97

From CLIC CDR

- Introduction & Review
- 2 Motivation
- Subsystems
 - Target
 - AMD
 - Traveling Wave Structure
 - Injector linac
- Start-to-end Optimization
- Conclusion

Motivation

Main Changes:

- \bullet The positron yield before the pre-damping ring has been improved from 0.39 to 0.97^1
- The first energy stage of CLIC is 380 GeV

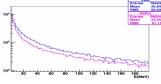
Rationale: improving performance & saving cost

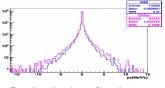
- Reduce the current of the primary electron bunch
- Reduce the energy of the primary electrons bunch
 - 3 GeV is considered.

How? - First, we need to improve the final positron yield as high as possible.

- Start-to-end optimization
 - 5 GeV
 - 3 GeV

¹C. Bayar, NIMA 869 (2017) 56-62


- Introduction & Review
- 2 Motivation
- Subsystems
 - Target
 - AMD
 - Traveling Wave Structure
 - Injector linac
- Start-to-end Optimization
- Conclusion


- 1 Introduction & Review
- 2 Motivation
- Subsystems
 - Target
 - AMD
 - Traveling Wave Structure
 - Injector linac
- Start-to-end Optimization
- Conclusion

Positron Generation Simulation - Channeling Process

There are two program to simulate the crystal channeling process

- VMS by V. M. Strakhovenko (Budker-INP, Russia)
 - Used for simulation in CLIC CDR
 - Photon distributions with only 4 different electron energies are provided
- FOT by X. Artru ² (French National Centre for Scientific Research)
 - The primary electron energy and crystal thickness can be scanned

Energy distribution for photons

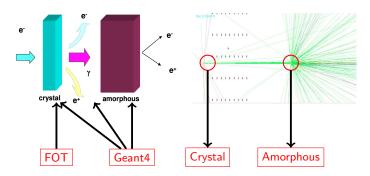
Px distributions for photons

Discrepancy between two codes: 10% - 20%³

Comments from X. Artru:

- The two codes are implemented rather different.
- It is not simple to guess which is better.

²X. Artru, NIMB48 (1990) 278-282

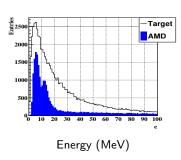

³O. Dadoun, Journal of Physics: Conference Series 357 (2012) 012024

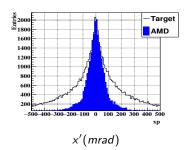
Positron Generation Simulation

Procedure

Positron yield for CDR case: 7.2

- FOT is used to generate photons in crystal tungsten (coherent & incoherent bremsstrahlung, channeling)
- These photons are set as primary particles in Geant4.
- Standard EM process in Geant4 is simulated in crystal & amorphous tungsten target.


- 1 Introduction & Review
- 2 Motivation
- Subsystems
 - Target
 - AMD
 - Traveling Wave Structure
 - Injector linac
- 4 Start-to-end Optimization
- Conclusion


Ideal magnetic field on axis: $B_z(z,0) = \frac{B_0}{1+\mu z^2}$

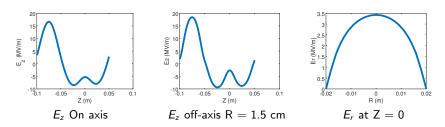
Positron yield after AMD is 2.8

• $B_0 = 6 \text{ T}, \ \mu = 55 \text{ m}^{-1}, \text{ Length} = 20 \text{ cm}$

The simulation is done by RF-Track⁵ (very fast)

- The parameters can be changed easily.
- It is much easier to do the start-to-end optimization

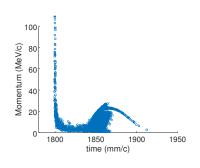
⁴Off-axis magnetic field is got from CLIC-NOTE-465 by T. Kamitani & L. Rinolfi

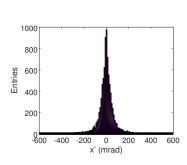

⁵A. Latina, MOPRC016, Proceedings of LINAC2016

- 1 Introduction & Review
- 2 Motivation
- Subsystems
 - Target
 - AMD
 - Traveling Wave Structure
 - Injector linac
- 4 Start-to-end Optimization
- Conclusion

Field Map - Need by RF-Track for tracking simulation

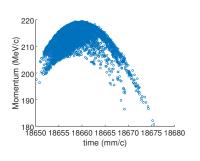
The field map for the $\frac{2\pi}{3}$ traveling wave structure is calculated with CST 2017.

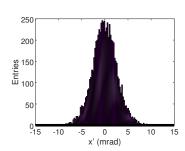

- Wave length $\lambda = 0.15$ m
- Traveling wave structure length: 1.5 m



The standing wave solution from SUPERFISH is also used to construct the traveling wave solution. These two methods are consistent with each other.

Decelerating Parts


Positron yield is 1.03



Accelerating Parts - The following 10 TWs

Positron yield is 0.92

The previous simulation with PARMELA ⁶ gives positron yield 0.97.

- The new result 0.92 are not different a lot from the previous one
- We can begin the start-to-end simulation

⁶C. Bayar, NIMA 869 (2017) 56-62

- 1 Introduction & Review
- 2 Motivation
- Subsystems
 - Target
 - AMD
 - Traveling Wave Structure
 - Injector linac
- Start-to-end Optimization
- Conclusion

Injector Linac

We assume the transmission efficiency in the injector linac is 100%.

 $E_f = E_i + \Delta E \cos(2\pi\omega t)$, here t is the arrive time at the end of pre-injector

- Introduction & Review
- Motivation
- Subsystems
 - Target
 - AMD
 - Traveling Wave Structure
 - Injector linac
- 4 Start-to-end Optimization
- Conclusion

Start-To-End optimization

Primary Electron Bun:

- E = 5 GeV & 3 GeV, $\Delta E/E = 10^{-3}$
- $\Delta P_x/P = 10^{-5}$
- $\sigma_{x,y} = 2.5$ mm, $\sigma_z = 1$ mm

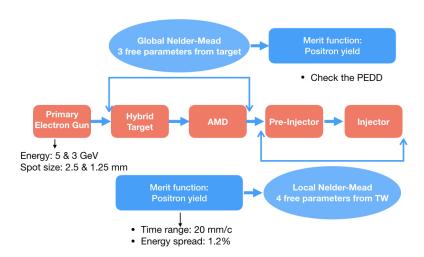
Target:

- Crystal tungsten thickness: $0.5 \rightarrow 3.0 \text{ mm}$
- ullet Amorphous tungsten thickness: 6 ightarrow 20 mm
- Distance between two tungstens: $0.5 \rightarrow 3 \text{ m}$

The AMD parameters is not optimised for now.

Traveling wave structure - Optimize for each target configuration.

- Phases for the decelerating and accelerating structure
- Gradients for the decelerating and accelerating structure


Injector Linacs:

 $E_f = E_i + \Delta E \cos(2\pi\omega t)$, here t is the arrive time at the end of pre-injector

Start-to-end optimization - Software version

- \bullet FOT The random generators are changed to the C++ standard library version
- Geant4 4.10.04.b01
- GCC 7.2.1 (or 6.2.0)
- octave 4.2.1
- RF-Track (updated to 2018-Jan-15th)
- ROOT 6.12.04
- (placet)

Start-to-end optimization - Nested Optimization

Outline Introduction & Review Motivation Subsystems Start-to-end Optin

Start-to-end optimization - Results - 2.5 mm spot size

- 5 GeV primary electron bunch
 - Crystal target thickness: 2.17 mm
 - Amorphous target thickness: 16.6 mm
 - Distance: 0.67 m
 - Phase: -33 & 85 degree
 - Gradient: 13.1 & 18.2 MV/m
 - Positron yield: 1.30
 - PEDD: 17.7 J/g
- 3 GeV primary electron bunch
 - Crystal target thickness: 2.20 mm
 - Amorphous target thickness: 12.3 mm
 - Distance: 0.65 m
 - Phase: -43 & 78 degree
 - Gradient: 13.7 & 18.0 MV/m
 - Positron yield: 0.76
 - PEDD: 17.1 J/g

Outline Introduction & Review Motivation Subsystems Start-to-end Optin

Start-to-end optimization - Results - 1.25 mm spot size

5 GeV primary electron bunch

• Crystal target thickness: 1.68 mm

• Amorphous target thickness: 14.9 mm

• Distance: 0.66 m

Phase: -30 & 90 degree

Gradient: 17.2 & 17.5 MV/m

Positron yield: 1.94

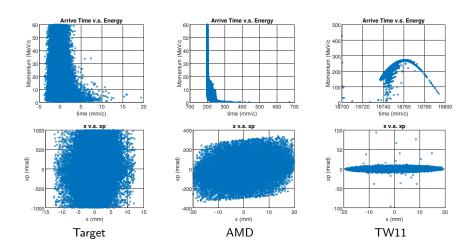
• PEDD: 29.3 J/g

3 GeV primary electron bunch

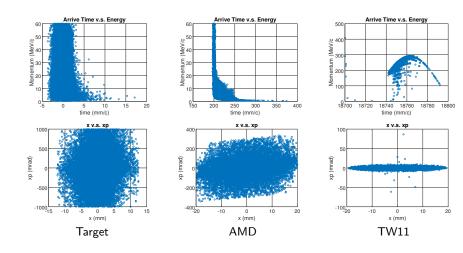
• Crystal target thickness: 1.54 mm

• Amorphous target thickness: 11.5 mm

Distance: 0.62 m


• Phase: -34 & 88 degree

• Gradient: 15.9 & 17.2 MV/m


• Positron yield: 1.03

• PEDD: 26.7 J/g

Longitudinal phase space - 5 GeV, 2.5 mm spot size

Longitudinal phase space - 5 GeV, 2.5 mm spot size

- Introduction & Review
- 2 Motivation
- Subsystems
 - Target
 - AMD
 - Traveling Wave Structure
 - Injector linac
- Start-to-end Optimization
- Conclusion

Conclusion

- The positron source start-to-end optimization environment is setup successfully
 - The program FOT is used to simulate the channeling process in crystal tungsten.
 - Geant4 is used to simulation the electromagnetic process in crystal & amorphous tungsten target.
 - AMD & traveling wave structure are simulation by RF-Track with proper field-map.
 - The injector linac is considered by simple calculation.
- The positron yield is determined as (within the PEDD limit):

Table: Positron yield

	Positron yield	5 GeV	3 GeV
٥	2.5 mm spot size	1.30	0.76
	1.25 mm spot size	1.94	1.03

Thank you!

Backup

Difference between FOT & VMS

- coherent bremsstrahlung & channeling
 - FOT: Baier-Katkov formula include non-uniformity field
 - VMS: uniform field approximation.
- incoherent bremsstrahlung
 - FOT: included in Baier-Katkov formula
 - VMS: calculated separately
- e⁺e⁻ pair production
 - FOT: Not included, should be simulated in Geant4
 - VMS: Coherent effects is considered when pair is produced in VMS