

YELLOW REPORT, SECTION THERMAL RADIATION: STATUS REPORT AND DISCUSSION

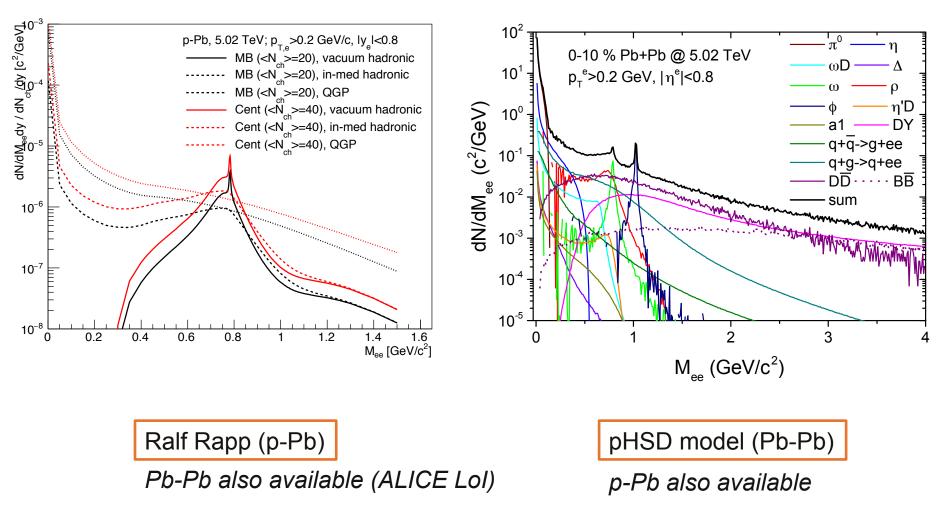
Outline:

- Introduction/Theory
- Photons
- Dileptons
- Other items
 - Peripheral collisions
 - Dark photons
- Summary and discussion

MICHAEL WEBER (SMI) 02.05.2018

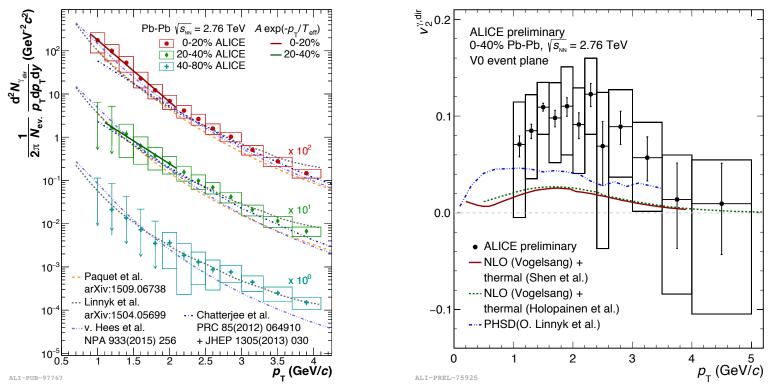
INTRODUCTION/THEORY

Standard


- Thermal radiation and photons
 - Do we have (updated) predictions?
- Dileptons
 - Expectations from R.Rapp and pHSD (also for small systems)

Extension

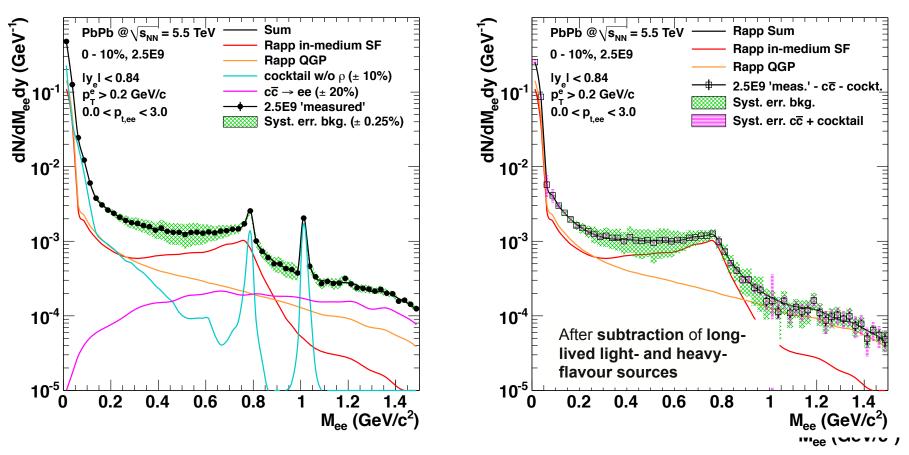
- Dilepton radiation and bulk viscosity
 - Expectations from Vujanovic et al. (see e.g. <u>arXiv:1703.06164</u>)?
- Virtual photon polarization
 - See e.g. Baym et al. (*Phys. Rev. C* 95, 044907 (2017))?
- At LHC: direct connection to Lattice QCD
 - Thermal dilepton rates and electrical conductivity (e.g. *Phys. Rev. D* 94, 034504 (2016) or *JHEP02* (2015) 186)
 - Discuss additional observables that might be accessible in Run 3/4?



RECENT THEORY INPUT

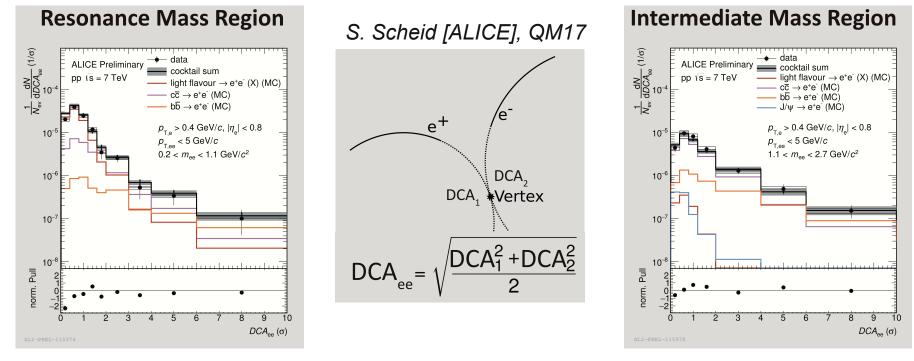
PHOTONS

- First measurement at LHC from soft exponential component of photon p_T spectrum (ALICE, Phys.Lett. B754 (2016) 235): T ~ 300 MeV (effective temperature averaged over system evolution)
- Projections for Run3/4 missing


DIMUONS MUON + MFT : $1.0 < p_{\tau}^{\mu\mu} < 10.0 \text{ GeV/c}$ <u>×10</u>³ MUON + MFT : $1.0 < p_{\tau}^{\mu\mu} < 10.0 \text{ GeV/c}$ dN/dM [dimuons per 10 MeV/c²] Expected Stat. for L = 10 nb⁻¹ Rapp sum (Syst. Err. **ē** + cocktail) 10⁵ Cocktail without p Rapp sum (Syst. Err. Bkg.) $c\overline{c} \rightarrow \mu\mu$ 80 Rapp QGP Rapp QGP Rapp in-medium SF Rapp in-medium SF 60 **10**⁴ 40 10³ 20 After subtraction of longlived light- and heavyflavour sources 0 0.2 0.8 1.2 0.4 0.6 1.4 0 0.2 0.8 0.4 0.6 1.2 0 1.4 Mass [GeV/c²] Mass [GeV/c²]

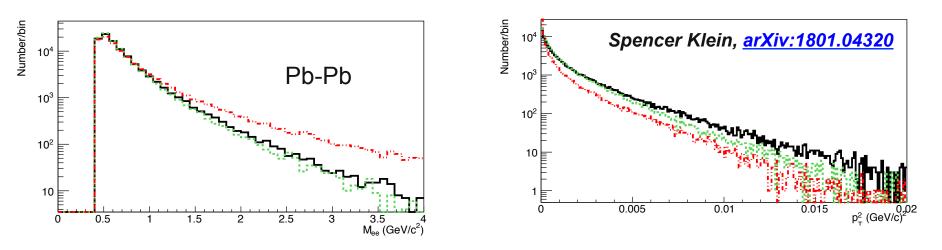
- Low mass spectral function with ~20% uncertainty
- Thermal radiation (M > 1GeV/c²) difficult due to large HF systematic uncertainty

6

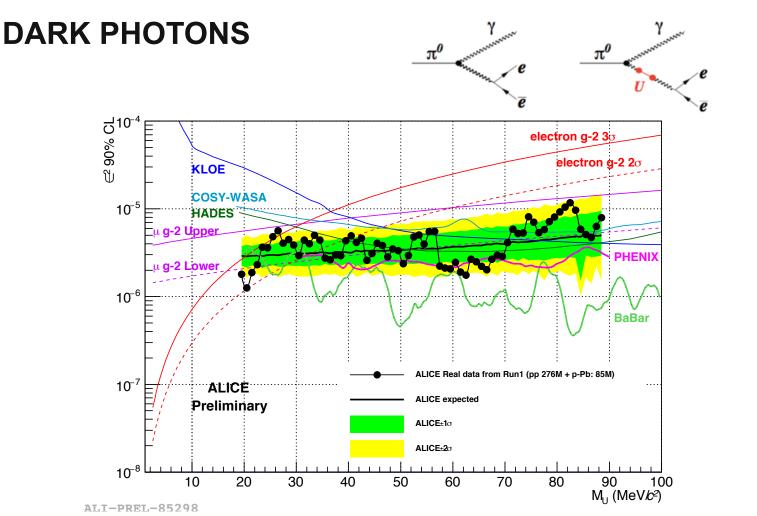

DIELECTRONS

- Low mass spectral function with ~20% uncertainty
- Temperature and flow with ~10% uncertainty
- Results from fast simulation with more realistic geometry and photon conversion in preparation Yellow report - WG5 - thermal radiation | 02.05.2018 | Michael Weber (SMI)

DIELECTRONS – HF CROSS SECTION



- Run 1/2:
 - use combined m_{ee} , $p_{T,ee}$ fit for heavy flavour cross section
 - Pair DCA as tool to distinguish between prompt and non-prompt sources
- Projections for Run3/4 missing:
 - better DCA_{ee} resolution
 - combined fit of m_{ee}, p_{T,ee}, DCA_{ee}
 - p_{T,ee} reach



PERIPHERAL COLLISIONS

- STAR and ALICE have observed an excess of dilepton pairs with $p_T < \sim 100$ MeV/c in peripheral heavy ion collisions
 - STAR sees J/ ψ + a mass continuum
 - ALICE sees only J/ψ
- The rate and kinematics are consistent with expectations from coherent photoproduction and $\gamma\gamma$ -> I+I-
- Expectations for ALICE acceptance, Run 3/4?

- Preliminary Run1 results from ALICE
- Missing updated projections for Run 3/4 (also should this stay in this section?)

ALICE

SUMMARY

	Photons	Dielectrons	Dimuons
Spectra	No projections yet	ALICE Lol Fast simulation	ALICE Lol Improved heavy flavour systematics/ lower p _T threshold
Temperature	No projections yet	ALICE LoI Fast simulation	See above
Flow	No projections yet	ALICE LoI Fast simulation	?
Other	Comparison to virtual photon method	HF cross section/ DCA method?	

Other items (to be put to other chapter/WG?):

- Dark photons
- Peripheral collisions

Available In preparation? Not for yellow report?

DISCUSSION ITEMS

- Organize as presented here (theory and then experimental expectations) or by topics
- Responsibles for subsections (a GitHub repository is prepared already), so far no written text
- Are we missing possible topics related to this section?
- Contact other theorists (see first slide) for expectations/discussions?
 Organize a dedicated meeting?
- Move topics to other sections (dark photons, peripheral collisions, small systems)
- Will we have updates on expectations?
 - Photons (projections on ALICE performance)
 - Dileptons (fast/full simulation, systematics, hadronic cocktail, virtual photon method, heavy flavour extraction, dimuons)
 - Peripheral collisions (calculations for ALICE acceptance)
 - Dark photons
- Are we statistics limited for some of the observables?

ALICE

NEXT STEPS

- Timeline:
 - end May/beginning June: next meeting for this section (with updates from the different topics)
 - mid June: all figures placeholders
 - end July: full text draft
 - end September: final version of draft
- See also:

https://indico.cern.ch/event/698005/contributions/2902627/attachments/ 1611619/2559334/Dainese_HLLHC_WG5_Mar2018.pdf

BACKUP

