MKB re-triggering: motivation, technical implementation, reliability analysis and expected energy deposition on dump block as function of triggering delay between MKBs and MKDs

C. Wiesner, W. Bartmann, C. Bracco, E. Carlier, L. Ducimetière, B. Goddard, T. Kramer, N. Magnin, E. Renner, V. Senaj

April, 27th 2018

With input from M. Frankl, T. Polzin

Outline

- 1) Introduction: LHC dilution system and traditional failure cases
- 2) The challenge: new common cause failure (coupling)
- 3) The (possible) mitigation: retrigger system for the MKBs
 - 1) Two implementations: more asynch. dumps vs. more complexity
 - 2) Reliability analysis
 - 3) Energy deposition in the dump
- 4) Conclusions and summary

LHC Dilution System

C. Bracco et al., LHC Performance Workshop, Chamonix, 26/01/2016

- 10 Dilution Kicker (MKB)
- Same maximum kick angle in both planes (~ 0.28 mrad)
- 4 MKBH operated at ~27 kV (7 TeV)
- 6 MKBV operated at ~16 kV (7 TeV)
- Higher failure probability and sensitivity for MKBH

Failure Cases: Flash-over

1) Loss of dilution of **2 MKB (located in one vacuum tank) due to flash-over** during dump execution

Beam sweep patterns at dump

Not clear if local damage in dump core could occur even for a regular dump of a HL-STD beam due to thermomechanical stresses. For final conclusion, stress analyses based on the detailed characterization of the dumpmaterial properties are required. Results expected for beginning of 2019.

Worst-case failure (to be accepted for any upgrade): 2 MKBH missing

Regular Sweep

Failure Cases: Erratic Firing

2) Erratic pre-firing of one MKB

Occurred 4x in 2015 and 2x in 2016,
 0x in 2017 during beam operation

Erratic firing of MKB
→ Voltage drop is detected by the BETS
→ Synchronous dump is executed.
Total reaction time can vary between 207 us and 1300 us
→ Risk of antiphase between pre-firing and

N. Magnin, N. Voumard

remaining MKBs

Failure Cases: Erratic Firing

2) Erratic pre-firing of one MKB

 MKBH generators will be upgraded in LS2 to operate at ~10% lower voltage with reduced probability of erratic prefiring. → Side-effect: higher damping of waveforms

Failure Cases: Erratic Firing

2) Erratic pre-firing of one MKB
Worst case: Pre-firing MKB in antiphase to remaining MKBs, decreasing the horizontal dilution by
< 37% (≈ 1.5 MKBH) for Run 2 and
< 31% (≈ 1.25 MKBH) for Run 3
waveforms.

Measurement and simulation of erratically firing MKBH, 01.10.2016

(= 1.14 missing MKBH)

Conclusion:

Antiphase not critical for *single* erratic, but potentially critical for *multi-erratic*.

The Challenge: New Common-Cause Failure

New Common-Cause Failure Case

•

•

3) **Common-cause failure mode** identified: Pre-firing of more than 1 MKB due to

- parasitic electromagnetic coupling between generators (observed during tests in 2016),
- noise (above the trigger threshold) on the retrigger line.

Can potentially lead to loss of more than 50% of dilution in one plane due to antiphase between the MKBs.

- Short-term mitigation (common mode filtering and insulation of retrigger boxes) implemented during EYETS 2016/17
- However, not clear if immunity margin is sufficient for future operation at 7 TeV
- Presently, coupling can not be excluded for Run 3

MKB Coupling: Reduced Dilution

The Solution? MKB Retrigger System

LBDS timing triangle

Asynchronous retriggering

Present System

No MKB retriggering

Asynchronous Retriggering (Option 1)

- MKB erratic \rightarrow retrigger all MKB \rightarrow execute asynchronous dump
- Direct connection of MKB to retrigger line

Synchronous Retriggering (Option 2)

- MKB erratic \rightarrow retrigger all MKB \rightarrow execute synchronous dump
- Direct connection of MKB to retrigger line
- Connection to TSU
 - Using 'External Trigger' (Inject & Dump input). No change in TSU hard-/firmware required
- Decoupling box (diode) on retrigger line to avoid asynch. dump
- Retrigger delays (RTD) to be used for XPOC analysis
- Option 2b: Add a delayed asynchronous path (after 120us delay)

Reliability Studies

MKB Retrigger Strategy

Run 3 waveforms 4 MKBH

	Current System – no coupling	Current System - coupling	Asynch. retriggering	Synch. retriggering	Synch. retriggering + delayed asynch. dump
Amplitude of horizontal waveform	69%82% (single erratic and BETS delay > 220us)	38%65%(double erratic)7%60%(triple erratic)	 ~100% → Asynch. losses 	~100% but change of TDE pattern	~100% but change of TDE pattern
How can "loss of dilution" failure occur?	Loss of most dilution in one plane only if 2 uncorrelated MKBH erratics occur in the same time interval, e.g. 200 us	Loss of most dilution in one plane, if antiphase.	As today	Loss of most dilution in both planes • if TSU chain fails in case of MKB erratic or • both diodes (A/B) fail in open circuit in case of MKD erratic	 Loss of most dilution in both planes if TSU chain and TDU chain fail in case of MKB erratic or both diodes (A/B) fail in open circuit in case of MKD erratic
Failure mode	independent	common cause	-	independent	independent

Reliability Analysis

	Current System – no coupling	Current System - coupling	Asynch. retriggering	Synch. retriggering	Synch. retriggering + delayed asynch. dump
"Loss of dilution"?	Only for double failure	If antiphase	As today	Failure of TSU chain or failure of both diodes	Failure of TSU chain and TDU chain or failure of both diodes
MTTF for "loss of dilution" case	For double erratic: 2.5e6 y; For double MKBH erratic with antiphase: 3.8e7 y	Difficult to quantify. For 1 multi- erratic/100 erratics: 25 y For 1 multi- erratic/1e4 erratics: 2500 y	As today	~6.3e5 years	~3e12 years
Additional asynch. dumps	0	0	1 to 4 (every MKB erratic)	8e-6 per beam and year	0.001 per beam and year
Additional synch. dumps	0	0	0	0.01 per beam and year	0.013 per beam and year

Conclusion: For preferred solution, calculated probability of "no dilution" failure is negligible and the expected increase in asynch. dumps per year is not relevant.

Reliability analysis: E. Renner

Energy Deposition

Beam Sweep Patterns

In case of an MKB erratic and synchronous retriggering, the MKDs are now fired with a certain time delay *after* the MKBs:

 \rightarrow beam sweep path depends on the position of the abort gap

Energy deposition and thermo-mechanical stresses in the dump core, and the upstream (US) and downstream (DS) window have to be studied.

Sweep patterns for different delay times between retriggered MKBs and synchronously firing MKDs

Energy Deposition

Energy Deposition

b2_high_C_MKB_shift_-70us_bcms_new b2 high C MKB shift -110us bcms new 0.25 0.25 High C, BCMS High C, BCMS High C, STD High C, STD 0.20 0.20 0.15 0.15 Beam sweep path can 0.10 0.10 overlap (or nearly y (m) 0.05 (E 0.05 0.00 \sim 0.00 overlap) -0.05 -0.05 Peak energy density is -0.10 -0.10• -0.15 -0.15 increased 0.2 -0.2 -0.1 0.0 0.1 -0.1 0.1 0.2 -0.1 0.0 0.3 x (m) x (m) 5.0 5.0 Energy density (FLUKA), US window Energy density (FLUCA), dump core 4.5 4.5 Energy density (FLUKA), DS window -- Inverse sweer velocity ($v_{\text{sweep}}^{\text{min}}$) 4.0 b2_high_C_MKB_shift_-35us_bcms_new 4.0 0.25 High C, BCMS unit overlap High C, STD LHC turn 0.20 3.5 3.5 $ho^{
m peak}/
ho^{
m nominal}$ localized . arb 3.0 E 0.15 hotspot 3.0 0.10 y (m) 0.05 2.5 2.5 $v_{\rm sweer}^{\rm min}$ 0.00 2.0 2.0 -0.05 -0.101.5 1.5 -0.15 1.0 1.0 -0.2 -0.1 0.0 0.1 0.2 0.3 x (m) ō 20 40 60 80 100 120 140 $t_{\rm delay}(\mu s)$ FLUKA simulations: M. Frankl

Energy Deposition

Energy Deposition: Summary

	T _{peak} dump core	Safety factor S _y US window	Safety factor S _y DS window
Nominal	1860 °C	1.8	1.3
2/4 MKBH missing	2840 °C	0.9	1.1
Retrigger worst case (t _{delay} <98us)	2760 °C (for 70 us delay)	1.2 (for 14 us delay)	To be checked
Worst-case filling pattern <i>M. Frankl, T. Polzin</i>	STD	BCMS	STD

- Dump upstream (US) and downstream (DS) windows: Safety factor S_y ≥ 2 for thermo-mechanical stresses is considered safe for operation.
- Permanent deformation is expected for S_v < 1.
- Upgrade of windows with Ti Gr5 should increase the yield strength sufficiently.

Conclusion: For the dump core and the US window, **the worst-case sweep paths for the retrigger scenario are less critical than the case '2 MKBH missing'.** To be confirmed for DS window.

So far, no show stopper for the retrigger implementation identified.

Assumed parameters: STD: 2748b, 2.3e11 ppb, 2.08 um, 7 TeV; BCMS: 2604b, 2.0e11 ppb, 1.37 um, 7 TeV Remark: FLUKA calculations will be repeated with new baseline HL-LHC parameters (no significant change expected)

Conclusions

- Accepted worst-case failure: Loss of 2 MKBH
- New common-cause failure can lead to loss of more than 50% of horizontal dilution. Occurrence cannot be excluded for Run 3.
- Possible solution is **MKB retrigger system:** mitigates common-cause failure (e.g. coupling)
- Option 1: MKB retriggering + asynch. dump: Easiest implementation, but expected asynch. dumps increase from 1 to 2..5 per beam and year. Potential issue for availability.
- Option 2a: MKB retriggering + synch. dump
- Option 2b: MKB retriggering + synch. dump + delayed asynch. dump (120 us)
 - More complex implementation. Reliability analysis showed:
 - Calculated probability for "no dilution" failure is negligible (MTTF ~1e12 years) and expected increase in asynch. dumps per year is not relevant (1 per 1000 years and beam)
 - Changed sweep path on the dump (in case of MKB erratic):
 - Worst-cases (filling pattern and retrigger delay) identified. They are, so far, less critical than failure case '2 MKBH missing' for the US window and the dump core. To be confirmed for the DS window.
- Option 2b is discussed in ABT as preferred solution for implementation in LS2.
- Long-term option: Mitigate common-cause failure by redesign of LBDS retrigger topology and system grounding. Not feasible for LS2. Under study for LS3.

Thank you for your attention!

What to do?

Run 3 waveforms 4 MKBH

	Max. horiz. deflection, single erratic	Max. horiz. deflection, double erratic	Max. horiz. deflection, triple erratic	Required changes
Current situation: BETS reacts with delay time [210us1296us]	69%82% (for BETS delay > 207 us)	38%65% (for BETS delay > 207 us)	7%60% (for BETS delay > 207 us)	None
1) Directly request synch. dump (do no retrigger MKBs)	55%99%	<mark>9%</mark> 98%	<mark>29%.</mark> 99%	Fast erratic detection
2) Synchronous MKB retriggering	 ~100% → change of sweep path on dump 	 ~100% → change of sweep path on dump 	 ~100% → change of sweep path on dump 	MKB retrigger system
3) Asynchronous MKB retriggering	~100% Asynch. losses	~100% Asynch. losses	~100% Asynch. losses	MKB retrigger system
4) Increase delay time, e.g. >1.5ms	~75%	~50%	~25%	Add time delay
5) Increase damping factor	→ 75% (small change of TDE pattern)	\rightarrow 50% (small change of TDE pattern)	→ 25% (small change of TDE pattern)	Modify generator

- 1) Worst case becomes more severe for double erratic
- 4) & 5) Only acceptable for single and double erratic
- 2) & 3) Valid for all number of erratics

Dilution Strength – Nominal Case

MKBH:

- Higher failure probability (operation at higher voltage)
- Higher failure sensitivity (4 instead of 6 modules)
- Higher failure impact (loss of horizontal deflection is more critical)

MKB Erratics in operation: 2015 to 2017

- Erratic firing only occurred for single MKBH: 4x in 2015 and 2x in 2016, none in 2017.
- Antiphase can reduce effective dilution

Event	Gen.	t _{delay} (us)	N _p p+	#bun- ches	
2015-04- 26_08h_16	A/B2	1 028	1.0e10	1	
2015-04- 27_09h_00	A/B2	1 208	9.4e10	1	
2015-05- 31_00h_56	A/B2	1 020	2.39e11	7	
2015-10- 24_20h_48	A/B2	1 049	1.93e14	1824	Effective
2016-10- 01_12h_27	B/B1	654	1.5e14	2220 _	→ 71.5%
2016-10- 04_18h_19	B/B2	1 029	1.42e11	5 —	→ 74%

All events occurred at 6.5 TeV

CERN

Temperature (Run 3 waveforms)

- Core: For all relevant time delays peak temperatures stay well below the temperature level in the scenario of a HL-STD beam dump missing the dilution of 2 MKBHs
- Windows: For most time delays the peak temperature is below the level of the case with 2 MKBHs missing. In upstream window at $t_{delay} = 14 \ \mu$ s, however, a significantly higher temperature is expected.
- ightarrow Thermo-mechanical responses to be analyzed

M. Frankl, 7th HL-LHC Collaboration Meeting, November 14th, 2017

Failure Modes and Specifications

- A. No/delayed MKB triggering resulting in insufficient dilution (FM_A) >Failure rate < 1 in 10^6 years
- B. Additional asynchronous dump due to system upgrade (FM_B) >max. 1 per year and beam
- C. Additional synchronous dump due to system upgrade (FM_C) >max. 1 per year and beam
- D. Detectable failures requiring downtime and maintenance^{**} (FM_D) >max. 1 per year and beam

General Assumptions:

- constant component failure rates
- periodic inspection: 'as good as new'
- no common cause failures for first assessment. Impact of dependencies evaluated in sensitivity analysis
- failure of one comp. does not increase/influence other component failure rates

Methodology:

- analytical solution (python model)
- benchmark with reliability workbench Isograph
- > slight differences in results can be explained by numerical integration errors

Identification of System Blocks & Prediction

	assumed failure rates per beam (FIT)	~MTTF per beam [years]	Source (pessimistic estimations)
МКВ	5E5	0.25 yrs (4 per year)	operation
MKD	2.5E5	0.5 yrs (2 per year)	operation
Diode	20	6 E3 yrs	prediction MIL-217F (2 FIT)
Connectors TDU	15	8 F3 vrs	[1]
TFO spurious. trigger	250	500 yrs	[2-4]
Link from RTL to BIS or TSU missing	10 (specification – no design)	1.3E4 yrs	specified / no system design
TSU to MKD trigger missing	10	1.3E4 yrs	[2-4]: 4E-10 /h

runtime: 20h/400 runs

- [1] V. Vatansever, CERN-Thesis, 2014: Reliability Analysis of the new link between the Beam Interlock System and the LHC Beam Dumping System
- [2] R. Filipini, Dependability Analysis of a Safety Critical System, 2006
- [3] R. Filipini: Reliability Analysis of the Trigger Synchronisation and Distribution System of the LHC Beam Dumping System
- [4] Review of the LBDS Safety and Reliability Analysis in the Light of the Operational Experience during the Period 2010-2012]

Results: Summary

Failure Modes	Layout 1 (1DB) operational years	Layout 2 (2DB) MTTF [Gh] / operation years	Layout 3 (No Loop in RTL) MTTF [Gh] / operation years
No Dilution	$3.2 \cdot 10^{12} yrs$	7.5 10 ¹¹ yrs	$6.3 \cdot 10^5 \ yrs$
Additional asynch. dump	1008 yrs	1012 <i>yr</i> s	2.5 10⁵ yr s
Additional synch dump	75 yr s	47 yrs	94 yrs
Downtime / No beam permit	105 <i>yr</i> s	71 <i>yr</i> s	168 yrs

All results should be multiplied by time(top energy)/(total Runtime)

Sensitivity: No Dilution / link from RTL to TSU

Failure Modes	Layout 1 (1DB) operational years	Layout 2 (2DB) MTTF [Gh] / operation years	Layout 3 (No Loop in RTL) MTTF [Gh] / operation years
No Dilution	$3.2 \cdot 10^{12} yrs$	7.5 10 ¹¹ yrs	6.3 · 10 ⁵ yrs
Additional asynch. dump	1008 yrs	1012 <i>yr</i> s	2 . 5 10 ⁵ <i>yr</i> s
Additional synch dump	75 yr s	47 yrs	94 yrs
Downtime / No beam permit	105 <i>yr</i> s	71 <i>yr</i> s	168 yr s

Sensitivity to Runtime

1) add. asynch dump, loop in RTL

Remark:

FM 'Synch. Dump' & 'maintenance' are dominated by OR junctions – no difference for runtime variation

LHC parameters

	T _{peak} dump core	Safety factor S _y US window	Safety factor S _y DS window
Nominal	1000 °C	2.7	3.1
2/4 MKBH missing	1400 °C	?	?
Retrig. worst case	?	?	?
Worst-case filling pattern	STD	BCMS	STD

Assumed parameters: STD: 2556b, 1.3e11 ppb, 2.6 um, 6.5 TeV; BCMS: 2556b, 1.3e11 ppb, 1.37 um, 6.5 TeV

M. Frankl, T. Polzin

Retrigger Patterns (Post-LS2 waveforms)

Retrigger sweep patterns for Run 2 and Post-LS2 waveforms

Higher damping of post-LS2
waveforms
changes energy
deposition for the retrigger scenario

Note: MKD & MKB gain factor implemented for new simulations.

Energy deposition: current waveforms

06/02/2018

Energy deposition: Comparison

Current waveforms

M. Frankl

MKB Coupling: Dilution Impact

MKB Coupling: Dilution Impact

Run 3: Higher damping (new MKB generators), 4 MKBH

MKB Coupling: Dilution Impact

HL-LHC: Higher damping (new MKB generators), 6 MKBH

120 6 MKBH 1 erratic + 5 delayed 2 erratic + 4 delayed instead of 3 erratic + 3 delayed 4 MKBH 4 erratic + 2 delayed100 For $t \rightarrow \infty$ Max. Horizontal Deflection (%) 5 erratic + 1 delayed 6 erratic + 0 delayed $\alpha_{max} \rightarrow 83.3\%$ (loss of 1 MKBH) 80 $\alpha_{max} \rightarrow 66.7\%$ (loss of 2 MKBH) 60 $\alpha_{max} \rightarrow 50\%$ (loss of 3 MKBH) 40 $\alpha_{max} \rightarrow 33.3\%$ (loss of 4 MKBH) $\alpha_{max} \rightarrow 16.7\%$ 20 (loss of 5 MKBH) Calculated using $\alpha_{max} \rightarrow 0\%$ simulated waveforms for (loss of 6 MKB 0 0 new MKB generators 200 400 600 800 1000 1200 with higher capacitances t shift (us) (V. Senaj). Minimum BETS delay Delay for MKBH erratic 2016-10-01

Failure Cases: Energy Deposition

- Studies ongoing: which temperature rise and dynamic stresses for dump core and windows are acceptable?
- Assumption for this talk: loss of >50% of dilution in one plane is not acceptable for HL-LHC parameters

	STD	BCMS
$\epsilon_{x,y}^n$	2.08 μ m·rad	1.37 μ m \cdot rad
l _b	2.3×10 ¹¹	2.0×10 ¹¹
Filling Scheme	R3-STD	R3-BCMS
Nominal beam intensity	6.32×10 ¹⁴ p+	5.21×10 ¹⁴ p+

Maximum temperature increase in dump core:

	\sim	Λ Λ	C
		VI	
-	<u> </u>	•••	-

к			number active MKBV					
		6	5	4	3	2	1	0
KBH	4	1827	1865	1931	2358	>3000	>3000	>3000
e N	3	2211	2237	2294	2432	>3000	>3000	>3000
activ	2	2807	2859	2922	>3000	>3000	>3000	>3000
ber	1	>3000	>3000	>3000	>3000	>3000	>3000	>3000
unu	0	>3000	>3000	>3000	>3000	>3000	>3000	>3000

К		number active MKBV						
		6	5	4	3	2	1	0
number active MKBH	4	1622	1644	1698	2074	2690	>3000	>3000
	3	1951	1979	2021	2141	2790	>3000	>3000
	2	2474	2513	2563	2649	>3000	>3000	>3000
	1	>3000	>3000	>3000	>3000	>3000	>3000	>3000
	0	>3000	>3000	>3000	>3000	>3000	>3000	>3000

M. Frankl, Energy deposition table for dilution failures, LIBD, 20.6.2017

