Theoretical prospects on V_{ub} and V_{cb}

Martin Jung

Talk at the XIII Meeting on B Physics: "Synergy between LHC and SUPERKEKB in the Quest for New Physics" Marseille, France, 1st of October 2018

Importance of (semi-)leptonic hadron decays

In the Standard Model:

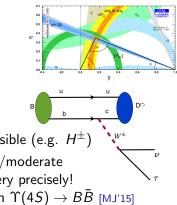
- Tree-level, $\sim |V_{ij}|^2 G_F^2 \, {
 m FF}^2$
- Determination of |V_{ij}| (7/9)
 This talk

Beyond the Standard Model:

- Leptonic decays ~ m_l²
 ▶ large relative NP influence possible (e.g. H[±])
- NP in semi-leptonic decays small/moderate
 ▶ Need to understand the SM very precisely! For instance isospin breaking in Ŷ(4S) → BB [MJ'15]

Key advantages:

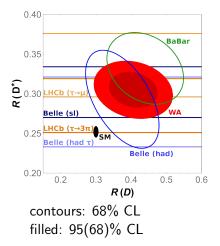
- Large rates
- Minimal hadronic input \Rightarrow systematically improvable
- Differential distributions ⇒ large set of observables



Lepton-non-Universality in $b \rightarrow c \tau \nu$ 2018

[Talks tomorrow by D. Buttazzo + A. Morris]

$$R(X) \equiv \frac{\operatorname{Br}(B \to X \tau \nu)}{\operatorname{Br}(B \to X \ell \nu)}$$



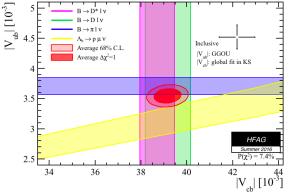
- $R(D^{(*)})$: 2× LHCb, 4× Belle recently
 - lacksim average \sim 4 σ from SM
- au-polarization (au
 ightarrow had) [1608.06391]
- $B_c
 ightarrow J/\psi au
 u$ [1711.05623] : huge
- Differential rates from Belle, BaBar
- Total width of B_c
- $b \rightarrow X_c \tau \nu$ by LEP
- New: *F*_L(*D**) [Belle@CKM'18]

Present e, μ results separately!

$|V_{xb}|$: inclusive versus exclusive

Example of complementarity between LHC and SuperKEKB!

Long-standing problem, motivation for NP [e.g. Voloshin'97] :



 Very hard to explain by NP [Crivellin/Pokorski'15] (but see [Colangelo/de Fazio'15])

Suspicion: experimental/theoretical systematics?

Comments regarding systematics and fitting [MJ/Straub'18]

Present (and future!) precision renders small effects important:

- d'Agostini effect: assuming systematic uncertainties ~ (exp. cv) introduces bias
 ▶ e.g. 1-2σ shift in |V_{cb}| in Belle 2010 binned data
- Rounding in a fit with strong correlations and many bins:
 1σ between fit to Belle 2017 data from paper vs. HEPdata
- Problem: how to provide unfolded data independent from the (precise) signal hypothesis?

Indpendent of form factor parametrization (later)

Independent of potential NP contributions

(more severe for $b \rightarrow c \tau \nu$)

BR measurements and isospin violation [MJ 1510.03423]

Detail due to high precision and small NP $P_{\text{D}} = P_{\text{D}} =$

• Relevant for $\sigma_{\rm BR}/{\rm BR} \sim \mathcal{O}(\%)$

Branching ratio measurements require normalization...

- *B* factories: depends on $\Upsilon \to B^+ B^-$ vs. $B^0 \bar{B}^0$
- LHCb: normalization mode, usually obtained from ${\cal B}$ factories Assumptions entering this normalization:
 - PDG: assumes $r_{+0} \equiv \Gamma(\Upsilon \to B^+B^-)/\Gamma(\Upsilon \to B^0 \bar{B}^0) \equiv 1$
 - LHCb: assumes $f_u \equiv f_d$, uses $r_{+0}^{\rm HFAG} = 1.058 \pm 0.024$ (also usually used for sl analyses by *B* factories)

Both approaches problematic:

- Potential large isospin violation in $\Upsilon \to BB$ [Atwood/Marciano'90]
- Measurements in r₊₀^{HFAG} assume isospin in exclusive decays
 This is one thing we want to test!
- Avoiding this assumption yields $r_{+0} = 1.035 \pm 0.038$

Inclusive V_{cb} determination

Inclusive $B \rightarrow X_c \ell \nu$ calculated in operator product expansion:

- Systematic expansion in $1/m_{b,c}$ and α_s
- State of the art: [Alberti/Becher/Bigi/Biswas/Boos/Czarnecki/Ewerth/ Gambino/Lunghi/Mannel/Melnikov/Nandi/Pak/Pivovarov/Rosenthal/...]
 - $\mathcal{O}(\alpha_s^0)$: parametrization up to $1/m^5$ (proliferation of hadronic parameters from $1/m^4$)
 - $\mathcal{O}(\alpha_s^1)$: up to $1/m^2$, $1/m^3$ work in progress [Gambino+]
 - O(α²_s): leading order
 - Consistent fit, seen e.g. in quark-mass determination

$$|V_{cb}| = (42.00 \pm 0.64) \times 10^{-3} [Gambino + '16]$$

Prospects: [Gambino@CKM]

- α_s/m^3 underway, α_s^3 "feasible" (total rate), necessary?
- Weak+e/m effects require attention (\rightarrow theory vs. experiment)
- Lattice determination of local *B* matrix elements [Kronfeld/Simone,Gambino/Melis/Simula]

Improvements in sight, several steps to qualitative new level

Inclusive V_{ub} determination

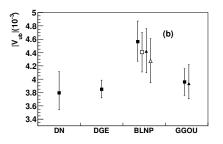
In a perfect world: analogous to V_{cb} inclusive.

The difference between theory and practice is that in theory, there is no difference, but in practice there is.

 $|V_{ub}|^2/|V_{cb}|^2\sim 1\%$

 \blacktriangleright Truly inclusive measurement flooded with b
ightarrow c background

- Non-local OPE, hadronic functions instead of parameters
 - Leading shape function universal, extracted from $B \rightarrow X_s \gamma$
 - Subleading SF treatment: new approaches NNVub + SIMBA
 - Moments of SFs related to hadronic parameters in $B
 ightarrow X_c \ell \nu$



Meanwhile...

- New BaBar analysis 2017
- High E_{ℓ} -region critical
- 3/4 methods: lower $|V_{ub}|$
- Effect in other studies?

Exp+Theo collaboration essential

Exclusive V_{ub} determinations

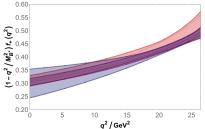
Traditionally: $B \rightarrow \pi \ell \nu$, $B \rightarrow \rho$ (weaker)

• Complementarity: $B \to \pi(\rho)$ @ Belle II, new modes @ LHCb

 $\blacklozenge |V_{ub}/V_{cb}| \text{ via } \Lambda_b \to p \text{ vs. } \Lambda_b \to \Lambda_c, \ B_s \to K^{(*)} \text{ vs. } B_s \to D_s, \ B_c(?)$

Larger kinematical range accessible

combine lattice and LCSR via pseudodata / BCL coefficients



Determination over full kin. range LCSR: NLO twist 2+3, LO higher-twist, NNLO [Khodjamirian+,Ball+,Bharucha] Lattice: Immense recent progress! ➡ extending *q*² range, 2+1+1, ...

[Celis/MJ/Li/Pich'17]

 $B \rightarrow \rho$: Recent LCSR results [Bharucha+'15], issue: ρ theo/exp $B \rightarrow \pi \pi \ell \nu$ description [Faller+, Cheng+, Feldmann+, Kim+, Böer+, Kang+, Meißner+] $\Lambda_b \rightarrow p$: first $|V_{ub}/V_{cb}|$ result, improvement (exp+theo) ongoing $B_s \rightarrow K$: form factor improvements [Khodjamirian+, FNAL/MILC, RBC/UKQCD] Excellent prospects, a lot to gain from LHC + SuperKEK-B!

Exclusive $b \rightarrow c$ determinations

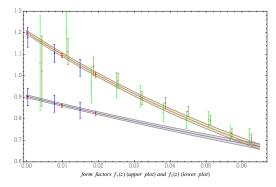
Dominated by $B \to D^{(*)}$, $B_s \to D_s^{(*)}$ possible (competitive?) Heavy to heavy transition \to HQET domain, lattice difficult $B \to D, D^*$ form factors:

- Unitarity + analyticity used to obtain expansion in z
 |z| ≪ 1, used in CLN + BGL parametrization alike
 BGL: formulation such that coefficients ≤ 1 as well
- CLN: uses heavy-quark limit to relate $B^* \rightarrow D^{(*)}$ FFs • Expansion in $1/m_{b,c}$ and α_s (known to NLO) LO: unique function [Isgur/Wise], 1/m 3(4) additional functions $1/m^2$ structure known [Falk+], but 1 unknown function per FF • extremely efficient parametrization up to 1/m and α_s
- Up to 2015: typically V_{cb} from CLN-parametrization fit
 2 problems: CLN error estimate optimistic + ignored by exp.

Recent discussion: how large are $1/m_c^2$ corrections?

V_{cb} from $B \rightarrow D$

2015: Unfolded $B \rightarrow D\ell\nu$ spectra [Belle] + finite recoil LQCD [HPQCD,MILC]



Analysis by Bigi/Gambino:

- Improved unitarity constraints
- Lattice data "contradict" CLN (sensitivity to higher 1/m orders)
- $|V_{cb}| = 40.49(96) imes 10^{-3}$, compatible with $V_{cb}^{
 m incl}$ and $B o D^*$

V_{cb} from $B ightarrow D^*$

2017: Prel. unfolded spectrum (4 variables) from Belle
However, in this case no finite-recoil FFs available from lattice
w/ Belle results SM fit in BGL possible (including lattice (+LCSR)) Results: [Bigi+,Grinstein+]

- Both CLN and BGL yield excellent fits
 - $|V_{cb}^{\text{CLN}}| = 38.2(15) \times 10^{-3}$
 - ▶ $|V_{cb}^{BGL}| = 41.7(21)[40.4(17)] \times 10^{-3}$ w/ or w/o LCSR

b BGL $1 - 2\sigma$ higher, larger difference than expected!

Intriguing result, but requires confirmation exp. + lattice

[1809.03290]: New Belle result $|V_{cb}^{CLN}| = 38.4(2)(6)(5)10^{-3}$ $|V_{cb}^{BGL}| = 42.3(3)(7)(6)10^{-3}$

Uncertainties due to parametrization were underestimated Using BGL, there is no indication of a V_{cb} puzzle Lattice data should resolve the issue within the year N.B.: This discussion relates to SM $R(D, D^*)$ predictions

Status lattice calculation of $B \rightarrow D^*$

Chris Monahan @ CKM:

FNAL/MILC: first (blind) 2+1 results, on MILC AsqTad ensembles

0.0016 Best fit First result for R(D*) soon... Lattice Belle 0.0014 0.0012 | $\eta_{ew}|^2 |V_{cb}|^2 |F(W)|^2$ 010000 010000 0.0008 0.0006 nina 1.4 1.5 1.0 1.1 1.2 1.3

 $b \rightarrow c$ Form Factors beyond the SM Only $V_{cb} \times FF(q^2)$ extracted from data SM: fit to data + normalization from lattice/LCSR/... $\rightarrow |V_{cb}|$ NP: can affect the q^2 -dependence, introduces additional FFs To determine general NP, FF shapes needed from theory

In [MJ/Straub'18] , we use all available theory input:

- Unitarity bounds (using results from [BGL,Bigi/Gambino(/Schacht)'16'17])
- LQCD for $f_{+,0}(q^2)$ $(B \to D)$, $h_{A_1}(q_{\max}^2)$ $(B \to D^*)$ [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for $R_{1,2}(0)$, $h_{A_1}(w = w_{\max}, 1.3)$, $G(w = w_{\max}, 1.3)$ [Faller+'08] HQET relations up to $\mathcal{O}(\alpha_s, 1/m_{b,c})$ plus $1/m_{c,b}^2$ subset, mostly à la [Bernlocher+'17], but w/o CLN relation between slope and curvature 0.6

2

4

6

8

10

Conclusions

Absence of clear NP signals \rightarrow new challenges

- Issues like isospin breaking now center of attention
- V_{cb}^{incl} stable and still improvable (theory homework)
- V^{incl}: BaBar result needs to be understood
 No resolution, but "suggestive"
- V^{excl}: Theoretical and experimental progress in parallel
 New modes + improved existing ones

expect signiificant improvement!

- V_{cb}^{excl} : $B \to D$ lattice sensitive to $1/m^2$ corrections • Improved $V_{cb} + R(D)$ determination w/ BGL
- $B \rightarrow D^*$ awaits first finite-recoil LQCD calculation, BGL vs. CLN
- ► V_{×b} puzzles severely reduced
- NP analyses require lattice determinations also of non-SM FFs! THANK YOU!

Implications of the Higgs EFT for Flavour: $q ightarrow q' \ell u$

$$b \rightarrow c \tau \nu$$
 transitions (SM: $C_{V_L} = 1, C_{i \neq V_L} = 0$):

$$\begin{split} \mathcal{L}_{\text{eff}}^{b \to c\tau\nu} &= -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_{j}^{5} C_j \mathcal{O}_j \,, \qquad \text{with} \\ \mathcal{O}_{V_{L,R}} &= (\bar{c} \gamma^{\mu} P_{L,R} b) \bar{\tau} \gamma_{\mu} \nu \,, \qquad \mathcal{O}_{S_{L,R}} = (\bar{c} P_{L,R} b) \bar{\tau} \nu \,, \\ \mathcal{O}_T &= (\bar{c} \sigma^{\mu\nu} P_L b) \bar{\tau} \sigma_{\mu\nu} \nu \,. \end{split}$$

- All operators are independently present already in the linear EFT
- However: Relations between different transitions: *C_{V_R}* is lepton-flavour universal [see also Cirigliano+'09] Relations between charged- and neutral-current processes, *e.g.* Σ_{U=u,c,t} λ_{Us} C^(U)_{S_R} = − ^{e²}/_{8π²}λ_{ts} C^(d)_S [see also Cirigliano+'12,Alonso+'15]</sub>

 These relations are again absent in the non-linear EFT

Matching for $b \rightarrow c \ell \nu$ transitions

$$\begin{split} C_{V_L} &= -\mathcal{N}_{\rm CC} \left[C_L + \frac{2}{v^2} c_{V5} + \frac{2V_{cb}}{v^2} c_{V7} \right] \,, \\ C_{V_R} &= -\mathcal{N}_{\rm CC} \left[\hat{C}_R + \frac{2}{v^2} c_{V6} \right] \,, \\ C_{S_L} &= -\mathcal{N}_{\rm CC} \left(c'_{S1} + \hat{c}'_{S5} \right) , \\ C_{S_R} &= 2 \,\mathcal{N}_{\rm CC} \left(c_{LR4} + \hat{c}_{LR8} \right) , \\ C_T &= -\mathcal{N}_{\rm CC} \left(c'_{S2} + \hat{c}'_{S6} \right) , \end{split}$$

where $\mathcal{N}_{\rm CC} = \frac{1}{2V_{cb}} \frac{v^2}{\Lambda^2}$, $C_L = 2c_{LL2} - \hat{c}_{LL6} + \hat{c}_{LL7}$ and $\hat{C}_R = -\frac{1}{2}\hat{c}_{Y4}$.

LO and NLO in linear and non-linear HEFT

Linear EFT Building blocks $\psi_f, X_{\mu\nu}, D_{\mu}, H$

Finite powers of fields *H*-interactions symmetry-restricted

LO:

- Terms of dimension 4
- SM (renormalizable)

NLO:

 59 ops. (w/o flavour) [Buchmüller+'86,Grzadkowski+'10] Non-linear EFT

Building blocks $\psi_f, X_{\mu\nu}, D_{\mu}, U, h$ $(U = \exp(2i\Phi/\nu))$ Arbitrary powers of Φ, h : $U, f(h/\nu)$ U-interactions symmetry-restricted

LO:

- Tree-level h,U interactions + $SU(2)_{L+R}$, g_{X-h} weak
- SM + $f_i(h/v)$, non-renorm.

NLO:

• ~ 100 ops. (w/o flavour)

[Buchalla+'14]

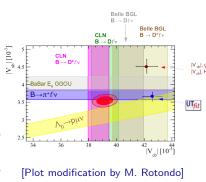
- Non-linear EFT generalizes linear EFT
- LO EFT predictive, justification for κ framework

$|V_{cb}|$: Recent developments

Recent Belle $B
ightarrow D, D^* \ell \nu$ analyses

Recent lattice results for $B \rightarrow D$ [FNAL/MILC, HPQCD, RBC/UKQCD (ongoing)] $B \rightarrow D$ between incl. $+ B \rightarrow D^*$ New lattice result for $B \rightarrow D^*$ [HPQCD] V_{cb}^{incl} cv, compatible with old result

$$B \rightarrow D^* \ell \nu$$
 re-analyses with CLN,
 $|V_{cb}| = 39.3(1.0)10^{-2}$ [Bernlochner+'17]
+ BGL [Bigi+,Grinstein+'17] (Belle only),
 $|V_{cb}| = 40.4(1.7)10^{-2}$



Theoretical uncertainties previously underestimated, in two ways:

- $1/m_c^2$ contributions likely underestimated in CLN
- Uncertainty given in CLN ignored in experimental analyses
- Inclusive-exclusive tension softened

Experimental analyses used

Decay	Observable	Experiment	Comment	Year
$B \rightarrow D(e, \mu) \nu$	BR	BaBar	global fit	2008
$B ightarrow D\ell u$	$\frac{d\Gamma}{dw}$	BaBar	hadronic tag	2009
$B ightarrow D(e,\mu) u$	<u>dΓ</u> dw <u>dΓ</u> dw	Belle	hadronic tag	2015
$B ightarrow D^*(e,\mu) u$	BR	BaBar	global fit	2008
$B ightarrow D^* \ell u$	BR	BaBar	hadronic tag	2007
$B ightarrow D^* \ell u$	BR	BaBar	untagged B^0	2007
$B ightarrow D^* \ell u$	BR	BaBar	untagged B^\pm	2007
$B o D^*(e,\mu) u$	$\frac{d\Gamma_{L,T}}{dw}$	Belle	untagged	2010
$B o D^* \ell \nu$	$\frac{d\Gamma}{d(w,\cos\theta_V,\cos\theta_l,\phi)}$	Belle	hadronic tag	2017

Different categories of data:

- Only total rates vs. differential distributions
- e, μ -averaged vs. individual measurements
- Correlation matrices given or not

Sometimes presentation prevents use in non-universal scenarios 😕

▶ Recent Belle analyses (mostly) exemplary 🙂

NP in semileptonic decays - Setup and tree-level scenarios EFT for $b \rightarrow c \ell \nu_{\ell'}$ transitions (no light ν_R , SM: $C_i^{\ell \ell'} = 0$):

$$\mathcal{L}_{\text{eff}}^{b \to c\ell\nu} = -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_{j}^{5} \sum_{\ell,\ell'=e,\mu,\tau} \left[\delta_{\ell\ell'} \delta_{jV_L} + C_j^{\ell\ell'} \right] \mathcal{O}_j^{\ell\ell'}, \quad \text{with}$$

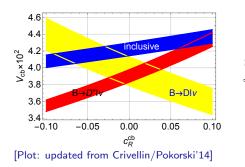
 $\mathcal{O}_{V_{L,R}}^{\ell\ell'} = (\bar{c}\gamma^{\mu}P_{L,R}b)\bar{\ell}\gamma_{\mu}\nu_{\ell'}, \ \mathcal{O}_{S_{L,R}}^{\ell\ell'} = (\bar{c}P_{L,R}b)\bar{\ell}\nu_{\ell'}, \ \mathcal{O}_{T}^{\ell\ell'} = (\bar{c}\sigma^{\mu\nu}P_{L}b)\bar{\ell}\sigma_{\mu\nu}\nu_{\ell'}.$

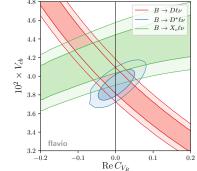
NP models typically generate subsets (never C_T alone)
➡ Full classification possible for tree-level mediators [Freytsis+'15] :

Model	C_{V_L}	C_{V_R}	C_{S_R}	C_{S_L}	Ст	$C_{S_L} = 4C_T$	$C_{S_L} = -4C_T$
Vector-like singlet	×						
Vector-like doublet		×					
W'	×						
H^{\pm}			×	×			
S_1	×						×
R_2						×	
S_3	×						
U_1	×		×				
V_2			×				
U_3	×						

Right-handed vector currents [MJ/Straub'18]

Usual suspect for tension inclusive vs. exclusive [e.g. Voloshin'97] SMEFT: $C_{V_R}^{\ell\ell'}$ is lepton-flavour-universal [Cirigliano+'10,Catà/MJ'15] All available data can be used in SMEFT context Violation could signal non-linear realization of EWSB [Catà/MJ'15]

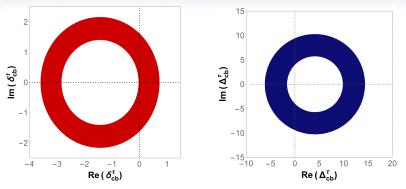




Impact of differential distributions:

 V_{cb} and C_{V_R} can be determined individually in $B
ightarrow D^*$

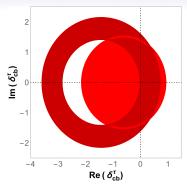
- Tension smaller, but is not improved by C_{V_R}
- C_{V_R} in SMEFT cannot explain $b \rightarrow c \tau \nu$ data

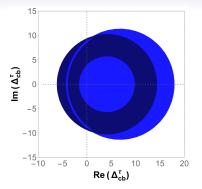


 $R(D), R(D^*)$: trivially explainable, but strange

•
$$R(D): \ \delta_{cb}^{\prime} \equiv \frac{(C_{S_L} + C_{S_R})(m_B - m_D)^2}{m_l(\bar{m}_b - \bar{m}_c)}, \ R(D^*): \Delta_{cb}^{\prime} \equiv \frac{(C_{S_L} - C_{S_R})m_B^2}{m_l(\bar{m}_b + \bar{m}_c)}$$

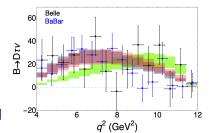
- R(D) compatible with SM at $\sim 2\sigma$
- Preferred scalar couplings from $R(D^*)$ huge $(|C_{S_L} C_{S_R}| \sim 1-5)$
- Can't go beyond circles with just R(D, D*)!

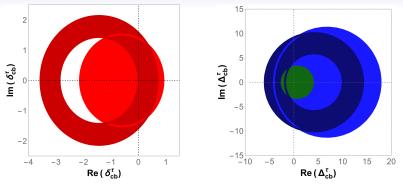




Differential rates:

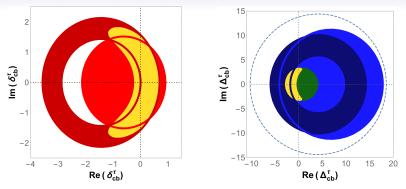
- compatible with SM and NP
- already now constraining, especially in $B \rightarrow D \tau \nu$
- "theory-dependence" of data needs addressing [Bernlochner+'17]





Total width of B_c :

- $B_c \rightarrow \tau \nu$ is an obvious $b \rightarrow c \tau \nu$ transition
 - not measurerable in foreseeable future
 - can oversaturate total width of $B_c!$ [X.Li+'16]
- Excludes second real solution in Δ^τ_{cb} plane (even scalar NP for R(D*)? [Alonso+'16, Akeroyd+'17])



 τ polarization:

- So far not constraining (shown: $\Delta\chi^2 = 1$)
- Differentiate NP models: with scalar NP [Celis/MJ/Li/Pich'13]

$$X_2^{D^{(*)}}(q^2)\equiv {\sf R}_{D^{(*)}}(q^2)\left[{\sf A}_\lambda^{D^{(*)}}(q^2)+1
ight]=X_{2,{\sf SM}}^{D^{(*)}}(q^2)$$

Consistent explanation in 2HDMs possible, flavour structure?

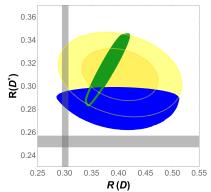
Large $R(D^*)$ possible with NP in $V_L(\hat{R}(X) = R(X)/R(X)_{SM})$:

- trivial prediction: $\hat{R}(D) = \hat{R}(D^*) = \hat{R}(\Lambda_c) = \dots \stackrel{exp}{\sim} 1.25$
- can be related to anomaly in $B o K^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $au o \mu
 u
 u$ [Feruglio+'16] and $b\bar{b} o X o au^+ au^-$ [Faroughy+'16]

Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM}$):

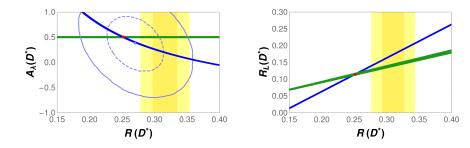
- trivial prediction: $\hat{R}(D) = \hat{R}(D^*) = \hat{R}(\Lambda_c) = \dots \stackrel{exp}{\sim} 1.25$
- can be related to anomaly in $B o {\cal K}^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $au o \mu
 u
 u$ [Feruglio+'16] and $b\bar{b} o X o au^+ au^-$ [Faroughy+'16]

Fit results for the two scenarios for $B \rightarrow D^{(*)} \tau \nu$:



Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM}$):

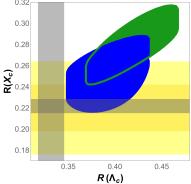
- trivial prediction: $\hat{R}(D) = \hat{R}(D^*) = \hat{R}(\Lambda_c) = \dots \stackrel{exp}{\sim} 1.25$
- can be related to anomaly in $B o {\cal K}^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $\tau \to \mu\nu\nu$ [Feruglio+'16] and $b\bar{b} \to X \to \tau^+\tau^-$ [Faroughy+'16] Fit predictions for polarization-dependent $B \to D^*\tau\nu$ observables:



Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM}$):

- trivial prediction: $\hat{R}(D) = \hat{R}(D^*) = \hat{R}(\Lambda_c) = \dots \stackrel{exp}{\sim} 1.25$
- can be related to anomaly in $B o K^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation

• issues with $\tau \to \mu\nu\nu$ [Feruglio+'16] and $b\bar{b} \to X \to \tau^+\tau^-$ [Faroughy+'16] Fit predictions for $B \to X_c \tau\nu$ and $\Lambda_b \to \Lambda_c \tau\nu$:



SM and left-handed vector operators As a crosscheck, produce SM values (using data from HEPdata): $V_{cb}^{B\to D} = (39.6 \pm 0.9)10^{-3}$ $V_{cb}^{B\to D^*} = (39.0 \pm 0.7)10^{-3}$ Iow compared to BGL analyses, compatible with recent results NP in $\mathcal{O}_{V_L}^{\ell\ell'}$: can be absorbed via $\tilde{V}_{cb}^{\ell} = V_{cb} \left[|1 + C_{V_L}^{\ell}|^2 + \sum_{\ell' \neq \ell} |C_{V_L}^{\ell\ell'}|^2 \right]^{1/2}$ Only subset of data usable 4.3 $B \rightarrow D, D^*$ in agreement $B \rightarrow D\ell\nu$ No sign of LFNU $B \rightarrow D^* \ell \nu$ 4.2• constrained to be $\lesssim \% \times V_{ch}$ 4.1 $V^{\mu}_{cb})/2$ 4.0 In the following: $10^2 imes (ilde{V}_{cb}^e + \ . .$ • e and μ analyzed separately Usable in different contexts 3.7 Full FF constraints used 3.6 Plots created with flavio flavio $35 \cdot$ + independently double-checked -0.10 -0.050.00 0.05 0.10 -0.150.15

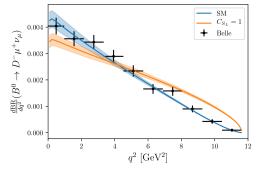
 $10^2 \times (\tilde{V}^e_{cb} - \tilde{V}^{\mu}_{cb})/2$

• Open source, adaptable

Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM For fixed V_{cb} , scalar NP increases rates Close to $q^2 \rightarrow q_{\max}^2$ in the SM: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_+^2 (q^2 - q_{\max}^2)^{3/2}$ With scalar contributions: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_0^2 |C_{S_R} + C_{S_L}|^2 (q^2 - q_{\max}^2)^{1/2}$ Findpoint very sensitive to scalar contributions! [see also Nierste+'08]

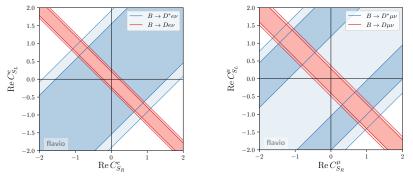
Scalar contributions ruled out by the distributions ($\Gamma_1 = \Gamma_2$):



Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM For fixed V_{cb} , scalar NP increases rates Close to $q^2 \rightarrow q_{\max}^2$ in the SM: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_+^2 (q^2 - q_{\max}^2)^{3/2}$ With scalar contributions: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_0^2 |C_{S_R} + C_{S_L}|^2 (q^2 - q_{\max}^2)^{1/2}$ Endpoint very sensitive to scalar contributions! [see also Nierste+'08]

Fit with scalar couplings (generic $C_{S_{L,R}}$):

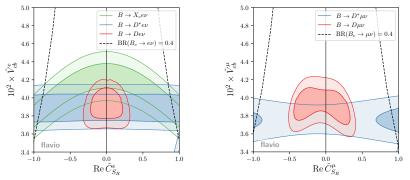


Slightly favours large contributions in muon couplings with $C^{\mu}_{\mathcal{S}_R} \approx -C^{\mu}_{\mathcal{S}_L}$

Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM For fixed V_{cb} , scalar NP increases rates Close to $q^2 \rightarrow q_{\text{max}}^2$ in the SM: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_+^2 \left(q^2 - q_{\text{max}}^2\right)^{3/2}$ With scalar contributions: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_0^2 |C_{S_R} + C_{S_L}|^2 \left(q^2 - q_{\text{max}}^2\right)^{1/2}$ Endpoint very sensitive to scalar contributions! [see also Nierste+'08]

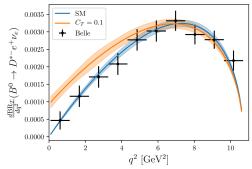
Also for LQ U_1 (or V_2): $B \rightarrow D$ stronger than $B \rightarrow D^*, X_c$:



Possible large contribution in $C_{S_R}^{\mu}$ excluded by $B \rightarrow D$

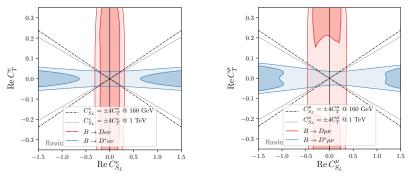
Tensor operatorsFor $m_{\ell} \rightarrow 0$, no interference with SMFor fixed V_{cb} , tensor contributions increase ratesClose to $q^2 \rightarrow q_{\min}^2$: $\frac{d\Gamma_T(B \rightarrow D^* \ell \nu)}{dq^2} \propto q^2 C_{V_L}^2 \left(A_1(0)^2 + V(0)^2\right) + 16m_B^2 C_T^2 T_1(0)^2 + O\left(\frac{m_{D^*}^2}{m_B^2}\right)$ Endpoint $(q^2 \sim 0)$ very sensitive to tensor contributions!

Tensor contributions ruled out by the distributions ($\Gamma_1 = \Gamma_2$):



Tensor operatorsFor $m_{\ell} \rightarrow 0$, no interference with SMFor fixed V_{cb} , tensor contributions increase ratesClose to $q^2 \rightarrow q_{\min}^2$: $\frac{d\Gamma_T(B \rightarrow D^* \ell \nu)}{dq^2} \propto q^2 C_{V_L}^2 \left(A_1(0)^2 + V(0)^2\right) + 16m_B^2 C_T^2 T_1(0)^2 + O\left(\frac{m_{D^*}^2}{m_B^2}\right)$ Endpoint $(q^2 \sim 0)$ very sensitive to tensor contributions!

Fit for generic C_{S_l} and C_T (including LQs S_1 and R_1):



 $B o D^*$ favours large contributions in $C^{e,\mu}_{S_L}$, ruled out by B o D