## Theoretical prospects on $V_{u b}$ and $V_{c b}$

## Martin Jung



Talk at the XIII Meeting on B Physics: "Synergy between LHC and SUPERKEKB in the Quest for New Physics"

Marseille, France, 1st of October 2018

## Importance of (semi-)leptonic hadron decays

In the Standard Model:

- Tree-level, $\sim\left|V_{i j}\right|^{2} G_{F}^{2} \mathrm{FF}^{2}$
- Determination of $\left|V_{i j}\right|(7 / 9)$

4 This talk
Beyond the Standard Model:

- Leptonic decays $\sim m_{l}^{2}$

$\rightarrow$ large relative NP influence possible (e.g. $H^{ \pm}$)
- NP in semi-leptonic decays small/moderate
$\rightarrow$ Need to understand the SM very precisely!
For instance isospin breaking in $\Upsilon(4 S) \rightarrow B \bar{B}$ [MJ'15]
Key advantages:
- Large rates
- Minimal hadronic input $\Rightarrow$ systematically improvable
- Differential distributions $\Rightarrow$ large set of observables


## Lepton-non-Universality in $b \rightarrow c \tau \nu 2018$

[Talks tomorrow by D. Buttazzo + A. Morris]

$$
R(X) \equiv \frac{\operatorname{Br}(B \rightarrow X \tau \nu)}{\operatorname{Br}(B \rightarrow X \ell \nu)}
$$


contours: $68 \%$ CL
filled: $95(68) \%$ CL

- $R\left(D^{(*)}\right)$ :
$2 \times$ LHCb, $4 \times$ Belle recently
4 average $\sim 4 \sigma$ from SM
- $\tau$-polarization ( $\tau \rightarrow$ had) [1608.06391]
- $B_{c} \rightarrow J / \psi \tau \nu$ [1711.05623] : huge
- Differential rates from Belle, BaBar
- Total width of $B_{c}$
- $b \rightarrow X_{c} \tau \nu$ by LEP
- New: $F_{L}\left(D^{*}\right)$ [Belle@CKM'18]

Present $e, \mu$ results separately!

## $\left|V_{x b}\right|$ : inclusive versus exclusive

## Example of complementarity between LHC and SuperKEKB!

Long-standing problem, motivation for NP [e.g. Voloshin'97] :


- Very hard to explain by NP [Crivellin/Pokorski' 15 ] (but see [Colangelo/de Fazio'15] )
$\leftrightarrows$ Suspicion: experimental/theoretical systematics?


## Comments regarding systematics and fitting [MJ/Straub'18]

Present (and future!) precision renders small effects important:

- d'Agostini effect: assuming systematic uncertainties $\sim$ (exp. cv) introduces bias 4 e.g. 1-2 $\sigma$ shift in $\left|V_{c b}\right|$ in Belle 2010 binned data
- Rounding in a fit with strong correlations and many bins:

↔ $1 \sigma$ between fit to Belle 2017 data from paper vs. HEPdata

- Problem: how to provide unfolded data independent from the (precise) signal hypothesis?
$\rightarrow$ Indpendent of form factor parametrization (later)
$\rightarrow$ Independent of potential NP contributions
(more severe for $b \rightarrow c \tau \nu$ )


## BR measurements and isospin violation [MJ 1510.03423]

Detail due to high precision and small NP
$\Leftrightarrow$ Relevant for $\sigma_{\mathrm{BR}} / \mathrm{BR} \sim \mathcal{O}(\%)$
Branching ratio measurements require normalization...

- $B$ factories: depends on $\Upsilon \rightarrow B^{+} B^{-}$vs. $B^{0} \bar{B}^{0}$
- LHCb: normalization mode, usually obtained from $B$ factories

Assumptions entering this normalization:

- PDG: assumes $r_{+0} \equiv \Gamma\left(\Upsilon \rightarrow B^{+} B^{-}\right) / \Gamma\left(\Upsilon \rightarrow B^{0} \bar{B}^{0}\right) \equiv 1$
- LHCb: assumes $f_{u} \equiv f_{d}$, uses $r_{+0}^{\mathrm{HFAG}}=1.058 \pm 0.024$ (also usually used for sl analyses by $B$ factories)
Both approaches problematic:
- Potential large isospin violation in $\Upsilon \rightarrow B B$ [Atwood/Marciano'90]
- Measurements in $r_{+0}^{\mathrm{HFAG}}$ assume isospin in exclusive decays

4 This is one thing we want to test!
$\leftrightarrows$ Avoiding this assumption yields $r_{+0}=1.035 \pm 0.038$

## Inclusive $V_{c b}$ determination

Inclusive $B \rightarrow X_{c} \ell \nu$ calculated in operator product expansion:

- Systematic expansion in $1 / m_{b, c}$ and $\alpha_{s}$
- State of the art: [Alberti/Becher/Bigi/Biswas/Boos/Czarnecki/Ewerth/ Gambino/Lunghi/Mannel/Melnikov/Nandi/Pak/Pivovarov/Rosenthal/...]
- $\mathcal{O}\left(\alpha_{s}^{0}\right)$ : parametrization up to $1 / m^{5}$ (proliferation of hadronic parameters from $1 / m^{4}$ )
- $\mathcal{O}\left(\alpha_{s}^{1}\right)$ : up to $1 / m^{2}, 1 / m^{3}$ work in progress [Gambino+]
- $\mathcal{O}\left(\alpha_{s}^{2}\right)$ : leading order
$\rightarrow$ Consistent fit, seen e.g. in quark-mass determination

$$
\left|V_{c b}\right|=(42.00 \pm 0.64) \times 10^{-3}\left[\text { Gambino }+^{\prime} 16\right]
$$

## Prospects: [Gambino@CKM]

- $\alpha_{s} / m^{3}$ underway, $\alpha_{s}^{3}$ "feasible" (total rate), necessary?
- Weak+e/m effects require attention ( $\rightarrow$ theory vs. experiment)
- Lattice determination of local $B$ matrix elements [Kronfeld/Simone, Gambino/Melis/Simula]
$\rightarrow$ Improvements in sight, several steps to qualitative new level


## Inclusive $V_{u b}$ determination

In a perfect world: analogous to $V_{c b}$ inclusive.
The difference between theory and practice is that in theory, there is no difference, but in practice there is.
$\left|V_{u b}\right|^{2} /\left|V_{c b}\right|^{2} \sim 1 \%$
4 Truly inclusive measurement flooded with $b \rightarrow c$ background
$\rightarrow$ Non-local OPE, hadronic functions instead of parameters

- Leading shape function universal, extracted from $B \rightarrow X_{s} \gamma$
- Subleading SF treatment: new approaches NNVub + SIMBA
- Moments of SFs related to hadronic parameters in $B \rightarrow X_{c} \ell \nu$


Meanwhile...

- New BaBar analysis 2017
- High $E_{\ell}$-region critical
- 3/4 methods: lower $\left|V_{u b}\right|$

4 Effect in other studies?
Exp+Theo collaboration essential

## Exclusive $V_{u b}$ determinations

Traditionally: $B \rightarrow \pi \ell \nu, B \rightarrow \rho$ (weaker)
$\rightarrow$ Complementarity: $B \rightarrow \pi(\rho)$ @ Belle II, new modes @ LHCb
$\rightarrow\left|V_{u b} / V_{c b}\right|$ via $\Lambda_{b} \rightarrow p$ vs. $\Lambda_{b} \rightarrow \Lambda_{c}, B_{s} \rightarrow K^{(*)}$ vs. $B_{s} \rightarrow D_{s}, B_{c}(?)$ Larger kinematical range accessible
$\rightarrow$ combine lattice and LCSR via pseudodata / BCL coefficients


Determination over full kin. range LCSR: NLO twist $2+3$, LO higher-twist, NNLO [Khodjamirian+,Ball+,Bharucha] Lattice: Immense recent progress!
$\rightarrow$ extending $q^{2}$ range, $2+1+1, \ldots$
[Celis/MJ/Li/Pich'17]
$B \rightarrow \rho$ : Recent LCSR results [Bharucha+'15], issue: $\rho$ theo/exp
$\rightarrow B \rightarrow \pi \pi \ell \nu$ description [Faller+,Cheng+,Feldmann+,Kim+,Böer+,Kang+,Meißner+] $\Lambda_{b} \rightarrow p$ : first $\left|V_{u b} / V_{c b}\right|$ result, improvement (exp+theo) ongoing $B_{s} \rightarrow K$ : form factor improvements [Khodjamirian+,FNAL/MILC,RBC/UKQCD]
$\Leftrightarrow$ Excellent prospects, a lot to gain from LHC + SuperKEK-B!

## Exclusive $b \rightarrow c$ determinations

Dominated by $B \rightarrow D^{(*)}, B_{s} \rightarrow D_{s}^{(*)}$ possible (competitive?) Heavy to heavy transition $\rightarrow$ HQET domain, lattice difficult $B \rightarrow D, D^{*}$ form factors:

- Unitarity + analyticity used to obtain expansion in $z$
$\checkmark|z| \ll 1$, used in CLN + BGL parametrization alike
4 BGL: formulation such that coefficients $\leq 1$ as well
- CLN: uses heavy-quark limit to relate $B^{*} \rightarrow D^{(*)} \mathrm{FFs}$

4 Expansion in $1 / m_{b, c}$ and $\alpha_{s}$ (known to NLO)
LO: unique function [lsgur/Wise], $1 / m 3$ (4) additional functions $1 / m^{2}$ structure known [Falk+], but 1 unknown function per FF
4 extremely efficient parametrization up to $1 / m$ and $\alpha_{s}$

- Up to 2015: typically $V_{c b}$ from CLN-parametrization fit
$\leftrightarrows 2$ problems: CLN error estimate optimistic + ignored by exp.
Recent discussion: how large are $1 / m_{c}^{2}$ corrections?


## $V_{c b}$ from $B \rightarrow D$

2015: Unfolded $B \rightarrow D \ell \nu$ spectra [Belle] + finite recoil LQCD [HPQCD,MILC]


Analysis by Bigi/Gambino:

- Improved unitarity constraints
- Lattice data "contradict" CLN (sensitivity to higher $1 / m$ orders)
$\leftrightarrows\left|V_{c b}\right|=40.49(96) \times 10^{-3}$, compatible with $V_{c b}^{\text {incl }}$ and $B \rightarrow D^{*}$


## $V_{c b}$ from $B \rightarrow D^{*}$

2017: Prel. unfolded spectrum (4 variables) from Belle
$\rightarrow$ However, in this case no finite-recoil FFs available from lattice
4 w / Belle results SM fit in BGL possible (including lattice (+LCSR)) Results: [Bigi+,Grinstein+]

- Both CLN and BGL yield excellent fits
$\Rightarrow\left|V_{c b}^{\mathrm{CLN}}\right|=38.2(15) \times 10^{-3}$
$\rightarrow\left|V_{c b}^{\mathrm{BGL}}\right|=41.7(21)[40.4(17)] \times 10^{-3} \mathrm{w} /$ or $\mathrm{w} / \mathrm{o}$ LCSR
4 BGL $1-2 \sigma$ higher, larger difference than expected!
$\rightarrow$ Intriguing result, but requires confirmation exp. + lattice
[1809.03290]: New Belle result
$\rightarrow\left|V_{c b}^{\mathrm{CLN}}\right|=38.4(2)(6)(5) 10^{-3} \quad\left|V_{c b}^{\mathrm{BGL}}\right|=42.3(3)(7)(6) 10^{-3}$
Uncertainties due to parametrization were underestimated 4 Using BGL, there is no indication of a $V_{c b}$ puzzle
4 Lattice data should resolve the issue within the year N.B.: This discussion relates to $\mathrm{SM} R\left(D, D^{*}\right)$ predictions


## Status lattice calculation of $B \rightarrow D^{*}$

Chris Monahan @ CKM:
FNAL/MILC: first (blind) 2+1 results, on MILC AsqTad ensembles
First result for $R\left(D^{*}\right)$ soon...


## $b \rightarrow c$ Form Factors beyond the SM

Only $V_{c b} \times \operatorname{FF}\left(q^{2}\right)$ extracted from data SM: fit to data + normalization from lattice/LCSR/ $\ldots \rightarrow\left|V_{c b}\right|$ NP: can affect the $q^{2}$-dependence, introduces additional FFs
4 To determine general NP, FF shapes needed from theory In [MJ/Straub'18], we use all available theory input:

- Unitarity bounds (using results from [BGL,Bigi/Gambino(/Schacht)'16'17])
- LQCD for $f_{+, 0}\left(q^{2}\right)(B \rightarrow D), h_{A_{1}}\left(q_{\max }^{2}\right)\left(B \rightarrow D^{*}\right)$ [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for $R_{1,2}(0), h_{A_{1}}\left(w=w_{\max }, 1.3\right), G\left(w=w_{\max }, 1.3\right)$ [Faller+'08] HQET relations up to $\mathcal{O}\left(\alpha_{s}, 1 / m_{b, c}\right)$ plus $1 / m_{c, b}^{2}$ subset, mostly à la [Bernlocher+'17], but w/o CLN
- relation between slope and curvature



## Conclusions

## Absence of clear NP signals $\rightarrow$ new challenges

- Issues like isospin breaking now center of attention
- $V_{c b}^{\text {incl }}$ stable and still improvable (theory homework)
- $V_{u b}^{\text {incl. }}$ : BaBar result needs to be understood
$\rightarrow$ No resolution, but "suggestive"
- $V_{u b}^{\text {excl. }}$ Theoretical and experimental progress in parallel

4 New modes + improved existing ones

- expect signiificant improvement!
- $V_{c b}^{\text {excl }}: B \rightarrow D$ lattice sensitive to $1 / m^{2}$ corrections
$\leftrightarrows$ Improved $V_{c b}+R(D)$ determination $\mathrm{w} / \mathrm{BGL}$
- $B \rightarrow D^{*}$ awaits first finite-recoil LQCD calculation, BGL vs. CLN
$4 V_{x b}$ puzzles severely reduced
- NP analyses require lattice determinations also of non-SM FFs!


## THANK YOU!

## Implications of the Higgs EFT for Flavour: $q \rightarrow q^{\prime} \ell \nu$

$b \rightarrow c \tau \nu$ transitions (SM: $C_{V_{L}}=1, C_{i \neq V_{L}}=0$ ):

$$
\begin{aligned}
\mathcal{L}_{\text {eff }}^{b \rightarrow c \tau \nu} & =-\frac{4 G_{F}}{\sqrt{2}} V_{c b} \sum_{j}^{5} C_{j} \mathcal{O}_{j}, & & \text { with } \\
\mathcal{O}_{V_{L, R}} & =\left(\bar{c} \gamma^{\mu} P_{L, R} b\right) \bar{\tau} \gamma_{\mu} \nu, & & \mathcal{O}_{S_{L, R}}=\left(\bar{c} P_{L, R} b\right) \bar{\tau} \nu \\
\mathcal{O}_{T} & =\left(\bar{c} \sigma^{\mu \nu} P_{L} b\right) \bar{\tau} \sigma_{\mu \nu} \nu & &
\end{aligned}
$$

- All operators are independently present already in the linear EFT
- However: Relations between different transitions:
$C_{V_{R}}$ is lepton-flavour universal [see also Cirigliano+'09]
Relations between charged- and neutral-current processes, e.g.
$\sum_{U=u, c, t} \lambda_{U_{S}} C_{S_{R}}^{(U)}=-\frac{e^{2}}{8 \pi^{2}} \lambda_{t s} C_{S}^{(d)}$ [see also Cirigliano+'12,Alonso+'15]
- These relations are again absent in the non-linear EFT


## Matching for $b \rightarrow c \ell \nu$ transitions

$$
\begin{aligned}
C_{V_{L}} & =-\mathcal{N}_{\mathrm{CC}}\left[C_{L}+\frac{2}{v^{2}} c_{V 5}+\frac{2 V_{c b}}{v^{2}} c_{V 7}\right] \\
C_{V_{R}} & =-\mathcal{N}_{\mathrm{CC}}\left[\hat{C}_{R}+\frac{2}{v^{2}} c_{V 6}\right] \\
C_{S_{L}} & =-\mathcal{N}_{\mathrm{CC}}\left(c_{S 1}^{\prime}+\hat{c}_{S 5}^{\prime}\right) \\
C_{S_{R}} & =2 \mathcal{N}_{\mathrm{CC}}\left(c_{L R 4}+\hat{c}_{L R 8}\right) \\
C_{T} & =-\mathcal{N}_{\mathrm{CC}}\left(c_{S 2}^{\prime}+\hat{c}_{S 6}^{\prime}\right)
\end{aligned}
$$

where $\mathcal{N}_{\mathrm{CC}}=\frac{1}{2 V_{c b}} \frac{v^{2}}{\Lambda^{2}}, C_{L}=2 c_{L L 2}-\hat{c}_{L L 6}+\hat{c}_{L L 7}$ and $\hat{C}_{R}=-\frac{1}{2} \hat{c}_{Y 4}$.

## LO and NLO in linear and non-linear HEFT

## Linear EFT

Building blocks $\psi_{f}, X_{\mu \nu}, D_{\mu}, H$
Finite powers of fields $H$-interactions symmetry-restricted LO:

- Terms of dimension 4

4SM (renormalizable)
NLO:

- 59 ops. (w/o flavour) [Buchmüller+'86,Grzadkowski+'10]


## Non-linear EFT

Building blocks $\psi_{f}, X_{\mu \nu}, D_{\mu}, U, h$ $(U=\exp (2 i \Phi / v))$
Arbitrary powers of $\Phi, h: U, f(h / v)$ $U$-interactions symmetry-restricted

LO:

- Tree-level h,U interactions $+S U(2)_{L+R}, g_{X-h}$ weak
$\leftrightarrows S M+f_{i}(h / v)$, non-renorm.
NLO:
- ~ 100 ops. (w/o flavour) [Buchalla+'14]
- Non-linear EFT generalizes linear EFT
- LO EFT predictive, justification for $\kappa$ framework


## $V_{c b} \mid$ : Recent developments

Recent Belle $B \rightarrow D, D^{*} \ell \nu$ analyses
Recent lattice results for $B \rightarrow D$
[FNAL/MILC, HPQCD, RBC/UKQCD (ongoing)]
4 $B \rightarrow D$ between incl. $+B \rightarrow D^{*}$
New lattice result for $B \rightarrow D^{*}$ [HPQCD] $\rightarrow V_{c b}^{\text {incl }} \mathrm{cv}$, compatible with old result $B \rightarrow D^{*} \ell \nu$ re-analyses with CLN, $\left|V_{c b}\right|=39.3(1.0) 10^{-2}$ [Bernlochner+'17]
 + BGL [Bigi+,Grinstein+'17] (Belle only), [Plot modification by M. Rotondo] $\left|V_{c b}\right|=40.4(1.7) 10^{-2}$

Theoretical uncertainties previously underestimated, in two ways:

- $1 / m_{c}^{2}$ contributions likely underestimated in CLN
- Uncertainty given in CLN ignored in experimental analyses
$\leftrightarrows$ Inclusive-exclusive tension softened


## Experimental analyses used

| Decay | Observable | Experiment | Comment | Year |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{B} \rightarrow \mathrm{D}(\mathrm{e}, \mu) \nu$ | BR | BaBar | global fit | 2008 |
| $B \rightarrow D \ell \nu$ | $\frac{d \Gamma}{d w}$ | BaBar | hadronic tag | 2009 |
| $\mathrm{B} \rightarrow \mathrm{D}(\mathrm{e}, \mu) \nu$ | $\frac{d \Gamma}{d w}$ | Belle | hadronic tag | 2015 |
| $\mathrm{B} \rightarrow \mathrm{D}^{*}(\mathrm{e}, \mu) \nu$ | BR | BaBar | global fit | 2008 |
| $B \rightarrow D^{*} \ell \nu$ | BR | BaBar | hadronic tag | 2007 |
| $B \rightarrow D^{*} \ell \nu$ | BR | BaBar | untagged $B^{0}$ | 2007 |
| $B \rightarrow D^{*} \ell \nu$ | BR | BaBar | untagged $B^{ \pm}$ | 2007 |
| $\mathrm{B} \rightarrow \mathrm{D}^{*}(\mathrm{e}, \mu) \nu$ | $\frac{d \Gamma_{L, T}}{d w}$ | Belle | untagged | 2010 |
| $B \rightarrow D^{*} \ell \nu$ | $\frac{d w}{d\left(w, \cos \theta_{V}, \cos \theta_{l}, \phi\right)}$ | Belle | hadronic tag | 2017 |

Different categories of data:

- Only total rates vs. differential distributions
- e, $\mu$-averaged vs. individual measurements
- Correlation matrices given or not
$\rightarrow$ Sometimes presentation prevents use in non-universal scenarios
$\leftrightarrows$ Recent Belle analyses (mostly) exemplary $\ddot{\bullet}$


## NP in semileptonic decays - Setup and tree-level scenarios

EFT for $b \rightarrow c \ell \nu_{\ell^{\prime}}$ transitions (no light $\nu_{R}, \mathrm{SM}: C_{j}^{\ell \ell^{\prime}}=0$ ):
$\mathcal{L}_{\text {eff }}^{b \rightarrow c \ell \nu}=-\frac{4 G_{F}}{\sqrt{2}} V_{c b} \sum_{j}^{5} \sum_{\ell, \ell^{\prime}=e, \mu, \tau}\left[\delta_{\ell \ell^{\prime}} \delta_{j V_{L}}+C_{j}^{\ell \ell^{\prime}}\right] \mathcal{O}_{j}^{\ell \ell^{\prime}}$,
$\mathcal{O}_{V_{L, R}}^{\ell \ell^{\prime}}=\left(\bar{c} \gamma^{\mu} P_{L, R} b\right) \bar{\ell} \gamma_{\mu} \nu_{\ell^{\prime}}, \mathcal{O}_{S_{L, R}}^{\ell \ell^{\prime}}=\left(\bar{c} P_{L, R} b\right) \bar{\ell} \nu_{\ell^{\prime}}, \mathcal{O}_{T}^{\ell \ell^{\prime}}=\left(\bar{c} \sigma^{\mu \nu} P_{L} b\right) \bar{\ell} \sigma_{\mu \nu} \nu_{\ell^{\prime}}$.
NP models typically generate subsets (never $C_{T}$ alone)
4 Full classification possible for tree-level mediators [Freytsis+'15] :

| Model | $C_{V_{L}}$ | $C_{V_{R}}$ | $C_{S_{R}}$ | $C_{S_{L}}$ | $C_{T}$ | $C_{S_{L}}=4 C_{T}$ | $C_{S_{L}}=-4 C_{T}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vector-like singlet | $\times$ |  |  |  |  |  |  |
| Vector-like doublet |  | $\times$ |  |  |  |  |  |
| $W^{\prime}$ | $\times$ |  |  |  |  |  | $\times$ |
| $H^{ \pm}$ |  |  | $\times$ | $\times$ |  |  |  |
| $S_{1}$ | $\times$ |  |  |  |  | $\times$ |  |
| $R_{2}$ |  |  |  |  |  |  |  |
| $S_{3}$ | $\times$ |  |  |  |  |  |  |
| $U_{1}$ | $\times$ |  | $\times$ |  |  |  |  |
| $V_{2}$ |  |  | $\times$ |  |  |  |  |
| $U_{3}$ | $\times$ |  |  |  |  |  |  |

## Right-handed vector currents [mJ/Straub'18]

Usual suspect for tension inclusive vs. exclusive [e.g. Voloshin'97] SMEFT: $C_{V_{R}}^{\ell \ell^{\prime}}$ is lepton-flavour-universal [Cirigliano+'10,Catà/MJ'15]
$\Leftrightarrow$ All available data can be used in SMEFT context
4 Violation could signal non-linear realization of EWSB [Catà/MJ'15]


Impact of differential distributions:
$V_{c b}$ and $C_{V_{R}}$ can be determined individually in $B \rightarrow D^{*}$
4 Tension smaller, but is not improved by $C_{V_{R}}$
$4 C_{V_{R}}$ in SMEFT cannot explain $b \rightarrow c \tau \nu$ data

## $b \rightarrow c \tau \nu$ data and scalar NP [Celis/MJ/Li/Pich'17]



$R(D), R\left(D^{*}\right)$ : trivially explainable, but strange

- $R(D): \delta_{c b}^{\prime} \equiv \frac{\left(C_{S_{L}}+C_{S_{R}}\right)\left(m_{B}-m_{D}\right)^{2}}{m_{l}\left(\bar{m}_{b}-\bar{m}_{c}\right)}, R\left(D^{*}\right): \Delta_{c b}^{\prime} \equiv \frac{\left(C_{S_{L}}-C_{S_{R}}\right) m_{B}^{2}}{m_{l}\left(\bar{m}_{b}+\bar{m}_{c}\right)}$
- $R(D)$ compatible with SM at $\sim 2 \sigma$
- Preferred scalar couplings from $R\left(D^{*}\right)$ huge $\left(\left|C_{S_{L}}-C_{S_{R}}\right| \sim 1-5\right)$
- Can't go beyond circles with just $R\left(D, D^{*}\right)$ !
$b \rightarrow c \tau \nu$ data and scalar NP [Celis/MJ/Li/Pich'17]



Differential rates:

- compatible with SM and NP
- already now constraining, especially in $B \rightarrow D \tau \nu$
- "theory-dependence" of data needs addressing [Bernlochner+'17]

$b \rightarrow c \tau \nu$ data and scalar NP [Celis/MJ/Li/Pich'17]



Total width of $B_{C}$ :

- $B_{c} \rightarrow \tau \nu$ is an obvious $b \rightarrow c \tau \nu$ transition
$\rightarrow$ not measurerable in foreseeable future
4 can oversaturate total width of $B_{c}$ ! [X.Li+'16]
- Excludes second real solution in $\Delta_{c b}^{\tau}$ plane (even scalar NP for $R\left(D^{*}\right)$ ? [Alonso+'16, Akeroyd+'17] )
$b \rightarrow c \tau \nu$ data and scalar NP [Celis/MJ/Li/Pich'17]


$\tau$ polarization:
- So far not constraining (shown: $\Delta \chi^{2}=1$ )
- Differentiate NP models: with scalar NP [Celis/MJ/Li/Pich'13]

$$
X_{2}^{D^{(*)}}\left(q^{2}\right) \equiv R_{D^{(*)}}\left(q^{2}\right)\left[A_{\lambda}^{D^{(*)}}\left(q^{2}\right)+1\right]=X_{2, S M}^{D^{(*)}}\left(q^{2}\right)
$$

Consistent explanation in 2 HDMs possible, flavour structure?

## Differentiating models with $b \rightarrow c \tau \nu$ observables

Large $R\left(D^{*}\right)$ possible with NP in $V_{L}\left(\hat{R}(X)=R(X) / R(X)_{S M}\right)$ :

- trivial prediction: $\hat{R}(D)=\hat{R}\left(D^{*}\right)=\hat{R}\left(\Lambda_{c}\right)=\ldots \stackrel{\exp }{\sim} 1.25$
- can be related to anomaly in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$modes
- $\hat{R}\left(X_{c}\right)=0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $\tau \rightarrow \mu \nu \nu$ [Feruglio+'16] and $b \bar{b} \rightarrow X \rightarrow \tau^{+} \tau^{-}$[Faroughy+'16]


## Differentiating models with $b \rightarrow c \tau \nu$ observables

Large $R\left(D^{*}\right)$ possible with NP in $V_{L}\left(\hat{R}(X)=R(X) / R(X)_{S M}\right)$ :

- trivial prediction: $\hat{R}(D)=\hat{R}\left(D^{*}\right)=\hat{R}\left(\Lambda_{c}\right)=\ldots \stackrel{\exp }{\sim} 1.25$
- can be related to anomaly in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$modes
- $\hat{R}\left(X_{c}\right)=0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $\tau \rightarrow \mu \nu \nu$ [Feruglio+'16] and $b \bar{b} \rightarrow X \rightarrow \tau^{+} \tau^{-}$[Faroughy+'16]

Fit results for the two scenarios for $B \rightarrow D^{(*)} \tau \nu$ :


## Differentiating models with $b \rightarrow c \tau \nu$ observables

Large $R\left(D^{*}\right)$ possible with NP in $V_{L}\left(\hat{R}(X)=R(X) / R(X)_{S M}\right)$ :

- trivial prediction: $\hat{R}(D)=\hat{R}\left(D^{*}\right)=\hat{R}\left(\Lambda_{c}\right)=\ldots \stackrel{\exp }{\sim} 1.25$
- can be related to anomaly in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$modes
- $\hat{R}\left(X_{c}\right)=0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $\tau \rightarrow \mu \nu \nu$ [Feruglio+'16] and $b \bar{b} \rightarrow X \rightarrow \tau^{+} \tau^{-}$[Faroughy+'16]

Fit predictions for polarization-dependent $B \rightarrow D^{*} \tau \nu$ observables:



## Differentiating models with $b \rightarrow c \tau \nu$ observables

 Large $R\left(D^{*}\right)$ possible with NP in $V_{L}\left(\hat{R}(X)=R(X) / R(X)_{S M}\right)$ :- trivial prediction: $\hat{R}(D)=\hat{R}\left(D^{*}\right)=\hat{R}\left(\Lambda_{c}\right)=\ldots \stackrel{e x p}{\sim} 1.25$
- can be related to anomaly in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$modes
- $\hat{R}\left(X_{c}\right)=0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $\tau \rightarrow \mu \nu \nu$ [Feruglio+'16] and $b \bar{b} \rightarrow X \rightarrow \tau^{+} \tau^{-}$[Faroughy+'16]

Fit predictions for $B \rightarrow X_{c} \tau \nu$ and $\Lambda_{b} \rightarrow \Lambda_{c} \tau \nu$ :


## SM and left-handed vector operators

As a crosscheck, produce SM values (using data from HEPdata): $V_{c b}^{B \rightarrow D}=(39.6 \pm 0.9) 10^{-3} \quad V_{c b}^{B \rightarrow D^{*}}=(39.0 \pm 0.7) 10^{-3}$
4 low compared to BGL analyses, compatible with recent results $N P$ in $\mathcal{O}_{V_{L}}^{\ell \ell^{\prime}}:$ can be absorbed via $\tilde{V}_{c b}^{\ell}=V_{c b}\left[\left|1+C_{V_{L}}^{\ell}\right|^{2}+\sum_{\ell^{\prime} \neq \ell}\left|C_{V_{L}}^{\ell \ell^{\prime}}\right|^{1}\right]^{1 / 2}$ Only subset of data usable $B \rightarrow D, D^{*}$ in agreement No sign of LFNU
$\rightarrow$ constrained to be $\lesssim \% \times V_{c b}$ In the following:

- e and $\mu$ analyzed separately
$\rightarrow$ Usable in different contexts
- Full FF constraints used
* Plots created with flavio
+ independently double-checked
4 Open source, adaptable



## Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM
4 For fixed $V_{c b}$, scalar NP increases rates
Close to $q^{2} \rightarrow q_{\text {max }}^{2}$ in the SM: $\frac{d \Gamma(B \rightarrow D \ell \nu)}{d q^{2}} \propto f_{+}^{2}\left(q^{2}-q_{\text {max }}^{2}\right)^{3 / 2}$
With scalar contributions: $\frac{d \Gamma(B \rightarrow D \ell \nu)}{d q^{2}} \propto f_{0}^{2}\left|C_{S_{R}}+C_{S_{L}}\right|^{2}\left(q^{2}-q_{\text {max }}^{2}\right)^{1 / 2}$
4 Endpoint very sensitive to scalar contributions! [see also Nierste+'08]
Scalar contributions ruled out by the distributions ( $\Gamma_{1}=\Gamma_{2}$ ):


## Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM
4 For fixed $V_{c b}$, scalar NP increases rates
Close to $q^{2} \rightarrow q_{\text {max }}^{2}$ in the $\mathrm{SM}: \frac{d \Gamma(B \rightarrow D \ell \nu)}{d q^{2}} \propto f_{+}^{2}\left(q^{2}-q_{\text {max }}^{2}\right)^{3 / 2}$
With scalar contributions: $\frac{d \Gamma(B \rightarrow D \ell \nu)}{d q^{2}} \propto f_{0}^{2}\left|C_{S_{R}}+C_{S_{L}}\right|^{2}\left(q^{2}-q_{\text {max }}^{2}\right)^{1 / 2}$
$\rightarrow$ Endpoint very sensitive to scalar contributions! [see also Nierste+'08]
Fit with scalar couplings (generic $C_{S_{L, R}}$ ):



Slightly favours large contributions in muon couplings with $C_{S_{R}}^{\mu} \approx-C_{S_{L}}^{\mu}$

## Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM
4 For fixed $V_{c b}$, scalar NP increases rates
Close to $q^{2} \rightarrow q_{\text {max }}^{2}$ in the $\mathrm{SM}: \frac{d \Gamma(B \rightarrow D \ell \nu)}{d q^{2}} \propto f_{+}^{2}\left(q^{2}-q_{\max }^{2}\right)^{3 / 2}$
With scalar contributions: $\frac{d \Gamma(B \rightarrow D \ell \nu)}{d q^{2}} \propto f_{0}^{2}\left|C_{S_{R}}+C_{S_{L}}\right|^{2}\left(q^{2}-q_{\text {max }}^{2}\right)^{1 / 2}$
$\rightarrow$ Endpoint very sensitive to scalar contributions! [see also Nierste+'08]
Also for LQ $U_{1}$ (or $V_{2}$ ): $B \rightarrow D$ stronger than $B \rightarrow D^{*}, X_{c}$ :



Possible large contribution in $C_{S_{R}}^{\mu}$ excluded by $B \rightarrow D$

## Tensor operators

For $m_{\ell} \rightarrow 0$, no interference with SM
4 For fixed $V_{c b}$, tensor contributions increase rates
Close to $q^{2} \rightarrow q_{\text {min }}^{2}$ :
$\frac{d \Gamma_{T}\left(B \rightarrow D^{*} \ell \nu\right)}{d q^{2}} \propto q^{2} C_{V_{L}}^{2}\left(A_{1}(0)^{2}+V(0)^{2}\right)+16 m_{B}^{2} C_{T}^{2} T_{1}(0)^{2}+O\left(\frac{m_{D^{*}}^{2}}{m_{B}^{2}}\right)$
4 Endpoint ( $\left.q^{2} \sim 0\right)$ very sensitive to tensor contributions!
Tensor contributions ruled out by the distributions $\left(\Gamma_{1}=\Gamma_{2}\right)$ :


## Tensor operators

For $m_{\ell} \rightarrow 0$, no interference with SM
4 For fixed $V_{c b}$, tensor contributions increase rates
Close to $q^{2} \rightarrow q_{\text {min }}^{2}$ :

$$
\frac{d \Gamma_{T}\left(B \rightarrow D^{*} \ell \nu\right)}{d q^{2}} \propto q^{2} C_{V_{L}}^{2}\left(A_{1}(0)^{2}+V(0)^{2}\right)+16 m_{B}^{2} C_{T}^{2} T_{1}(0)^{2}+O\left(\frac{m_{D^{*}}^{2}}{m_{B}^{2}}\right)
$$

4 Endpoint ( $\left.q^{2} \sim 0\right)$ very sensitive to tensor contributions!
Fit for generic $C_{S_{L}}$ and $C_{T}$ (including LQs $S_{1}$ and $R_{1}$ ):


$B \rightarrow D^{*}$ favours large contributions in $C_{S_{L}, \mu}^{e, \mu}$, ruled out by $B \rightarrow D$

