LHCb prospects for measurements of UT angles

Anton Poluektov

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

1 October 2018

XIII Meeting on B Physics Synergy between LHC and SuperKEKB in the Quest for New Physics Marseille, France, 1–3 October 2018

On behalf of the LHCb collaboration

Unitarity Triangle measurements

Cabibbo-Kobayashi-Maskawa matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Sensitivity to NP comes from the global consistency of various measurements

Anton Poluektov

Unitarity Triangle measurements

Cabibbo-Kobayashi-Maskawa matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Sensitivity to NP comes from the global consistency of various measurements

LHCb upgrade I

Time-dependent CP violation

Interference between the decays with and without mixing

me-dependent CP asymmetry

$$A_{CP}(t) = \frac{\Gamma(\overline{B}^{0}(t) \to f) - \Gamma(B^{0}(t) \to f)}{\Gamma(\overline{B}^{0}(t) \to f) + \Gamma(B^{0}(t) \to f)} = \frac{S \sin(\Delta m t) + C \cos(\Delta m t)}{\cosh(\frac{1}{2}\Delta\Gamma t) + A_{\Delta\Gamma} \sinh(\frac{1}{2}\Delta\Gamma t)}$$

Flavour tagging

Performance critically depends on flavour tagging performance.

$$\sigma \propto \frac{1}{\sqrt{\epsilon_{eff}N}}; \quad \epsilon_{eff} = \epsilon_{tag}(1-2\omega); \quad \epsilon_{tag} = \frac{N_{tagged}}{N_{tagged} + N_{untagged}}; \quad \omega = \frac{N_{right}}{N_{right} + N_{wrong}}$$

With Upgrade II: expect $\langle N_{PV} \rangle \sim 50$.

Timing in VELO/tracker is essential to recover Run I performance. \sim 50 ps will be needed to reach reasonable track-PV mis-association rate.

Anton Poluektov

Current sin 2β measurements

Measured in
$$B^0 \rightarrow J/\psi K^0_S$$
 with $J/\psi \rightarrow \mu^+\mu^-$ and e^+e^- , and $B^0 \rightarrow \psi(2S)K^0_S$, $\psi(2S) \rightarrow \mu^+\mu^-$.

Combined result:

$$\begin{split} S_{c\bar{c}K_{\rm S}^0} &= ~0.760 \pm 0.034 \\ C_{c\bar{c}K_{\rm S}^0} &= -~0.017 \pm 0.029 \end{split}$$

Precision similar to B factories. Dominated by statistics.

[PRL 115, 031601 (2015)] [JHEP 11 (2017) 170]

Upgrade prospects

[LHCb-PUB-2018-009: "Physics case for an LHCb Upgrade II"] Assuming FT performance can be kept at Run I level: $\sigma(\sin 2\beta) = 0.003$ for 300 fb⁻¹.

Penguin contribution becomes a major systematic uncertainty.

- SU(3) symmetry to constrain penguin contribution, e.g. $B_s \rightarrow J/\psi K_S^0$.
- $B^0 \rightarrow D\pi^+\pi^-$ mode: tree-level process; no penguin pollution. In addition, measures sin 2β and cos 2β independently.
 - $D \rightarrow KK, \pi\pi$: TD Dalitz plot analysis (model uncertainty)

 $\sigma(\sin 2\beta) \sim 0.007, \ \sigma(\cos 2\beta) \sim 0.017$ for 300 fb⁻¹

- [JPG 36 (2009) 025006]

Another unitarity triangle and β_s

 β_s : similar to β , but in B_s^0 system.

Measurable phase between mixing and decay:

$$\phi_{s} = \phi_{M} - 2\phi_{D} = -2\beta_{s} + \Delta\phi_{s}^{peng} + \delta_{s}^{NP}$$

LOS \$5

- Sensitivty to New Physics
- Input measurement for other CKM studies (e.g. $B_s^0 o D_s K$, see later)

Similar TD formalism, but more complicated because of finite $\Delta\Gamma_s$:

$$\frac{d\Gamma_{B_{s}^{0}(\bar{B}_{s}^{0})\to f}(t)}{dt} \propto e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \right] \\ \pm C_{f} \cos(\Delta m_{s}t) \mp S_{f} \sin(\Delta m_{s}t) \right]$$

Mixing-induced CP violation in $B_s \rightarrow J/\psi K^+ K^-$

[PRL 114, 041801 (2015)]

- K^+K^- can be in P wave (ϕ) or S wave
- 3 P waves (CP-odd or CP-even), angular analysis to distinguish them
- Ambiguity $\varphi_s \leftrightarrow \pi \varphi_s$ is resolved by measuring the *P* wave strong phase as a function of m_{KK} .
- Combined with $B^0_s o J/\psi \pi^+\pi^-$, $B^0_s o \psi(2S) K^+ K^-$

[LHCb-PUB-2018-009: "Physics case for an LHCb Upgrade II"]

Important to combine several $b \rightarrow c\bar{c}s$ modes to control systematic uncertainties and penguin contribution.

Several modes are expected to measure non-zero $-2\beta_s^{SM}=-36.4\pm1.2$ mrad.

SM reference measurement: γ from trees

- Measured entirely from tree decays.
- All hadronic parameters can be constrained from experiment ⇒ theoretically very clean (uncertainty $< 10^{-7}$ [Brod, Zupan, JHEP 1401 (2014) 051])
- Combination of many different modes:
 - Time-integrated asymmetries in $B \rightarrow DK$, $B \rightarrow DK^*$, $B \rightarrow DK\pi$ with $D \rightarrow hh$, hhhh("ADS", "GLW")
 - Dalitz plot analyses of $D^0 \to K^0_{\rm S} h^+ h^-$ from $B \to DK, B \to DK^*$ ("GGSZ")
 - Time-dependent analyses of $B_s^{0'}
 ightarrow D_s K$, $B^0
 ightarrow D\pi$
- Experimentally, just entering precision measurement regime (< 10%)

[LHCb-CONF-2016-001]

0.18 LHCb *CP*-violating rate for $B^{\pm} \rightarrow D(\rightarrow f)K^{\pm}$ decays: 0.16 0.14 $\Gamma(B^{\pm} \rightarrow D(\rightarrow f)K^{\pm}) = r_D^2 + r_B^2 + 2\kappa r_D r_B \cos(\delta_B - \delta_D \pm \gamma)$ 0.12 r_B : ratio of $b \rightarrow u$ and $b \rightarrow c$ amplitudes 0.1 r_D : ratio of $D^0 \to f$ and $\overline{D}^0 \to f$ amplitudes ($\equiv 1$ for D_{CP}) 0.08 δ_B and δ_D : corresponding strong phase differences κ : coherence factor ($\equiv 1$ for 2-body decays) 20 40 80 100 120 140 160 180 60 γ[°]

Combination of several D and B decay modes to constrain γ

γ from $B^\pm \to D K^\pm$, $D \to K^0_{\rm S} \pi^+ \pi^-$

Information on γ from Dalitz plot analysis of $D \to K_{\rm S}^0 \pi^+ \pi^-$ from $B^{\pm} \to D K^{\pm}$. Dalitz plot density: $d\sigma(m_+^2, m_-^2) \sim |A|^2 dm_+^2 dm_-^2$, where $m_{\pm}^2 = m_{K_S \pi^{\pm}}^2$ Flavour D amplitude: $A_D(m_+^2, m_-^2)$

Amplitude of $D \to K^0_{
m S} \pi^+ \pi^-$ from $B^+ \to D K^+$:

$$A_B(m_+^2, m_-^2) = A_D(m_+^2, m_-^2) + r_B e^{i\delta_B + i\gamma} A_D(m_-^2, m_+^2)$$

Need to know $A_D(m_+^2, m_-^2)$, both amplitude and phase (or, more precisely, phase difference between (m_+^2, m_-^2) and (m_-^2, m_+^2)).

Model-dependent: obtain A_D from $D \to K^0_S \pi^+ \pi^-$ fit to the isobar model \Rightarrow model uncertainty

Model-independent: obtain phase difference info from $e^+e^- \rightarrow D^0\overline{D}^0$ decays (CLEO, BES-III)

State of the art: γ from Dalitz plot analyses

- Dalitz plot efficiency correction
- Mass fit shapes

γ from time-dependent analyses

Interference between $b \rightarrow u$ and $b \rightarrow c$ amplitude from B_s^0 mixing. Comparable magnitudes $r = |\frac{p}{q} \frac{A_f}{A_{\overline{f}}}| \simeq 0.4$.

Similar technique with $B^0 \rightarrow D\pi$ (but negligible $\Delta\Gamma_d$, small $r \simeq 0.02 \Rightarrow$ only two observables $S_f, S_{\overline{f}}$).

Measure $2\beta + \gamma$ with the external input for *r* (from $SU(3) B^0 \rightarrow D_s \pi$)

γ from time-dependent analyses

Systematic uncertainties: background, Δm_s , time acceptance, resolution, flavour tagging. All data-driven.

Safe to assume $1/\sqrt{N}$ scaling $\Rightarrow \sim 1^{\circ}$ with 300 fb⁻¹.

[LHCb-PUB-2018-009: "Physics case for an LHCb Upgrade II"]

-					
B decay	D decay	Method	Ref.	$Dataset^{\dagger}$	Status since last com-
					bination [3]
$B^+ \to DK^+$	$D \rightarrow h^+ h^-$	GLW	[14]	Run 1 & 2	Minor update
$B^+ \to DK^+$	$D \rightarrow h^+ h^-$	ADS	[15]	Run 1	As before
$B^+ \rightarrow DK^+$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[15]	Run 1	As before
$B^+ \rightarrow DK^+$	$D \rightarrow h^+ h^- \pi^0$	GLW/ADS	[16]	Run 1	As before
$B^+ \rightarrow DK^+$	$D \rightarrow K_s^0 h^+ h^-$	GGSZ	[17]	Run 1	As before
$B^+ \rightarrow DK^+$	$D \rightarrow K_s^0 h^+ h^-$	GGSZ	[18]	Run 2	New
$B^+ \rightarrow DK^+$	$D \rightarrow K_s^0 K^+ \pi^-$	GLS	[19]	Run 1	As before
$B^+ \rightarrow D^* K^+$	$D \rightarrow h^{+}h^{-}$	GLW	[14]	Run 1 & 2	Minor update
$B^+ \to DK^{*+}$	$D \rightarrow h^+ h^-$	GLW/ADS	[20]	Run 1 & 2	Updated results
$B^+ \rightarrow DK^{*+}$	$D ightarrow h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[20]	Run 1 & 2	New
$B^+ \to D K^+ \pi^+ \pi^-$	$D \rightarrow h^+ h^-$	GLW/ADS	[21]	Run 1	As before
$B^0 \to DK^{*0}$	$D \rightarrow K^+ \pi^-$	ADS	[22]	Run 1	As before
$B^0 \rightarrow DK^+\pi^-$	$D \rightarrow h^+ h^-$	GLW-Dalitz	[23]	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_s^0 \pi^+ \pi^-$	GGSZ	[24]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	TD	[25]	Run 1	Updated results
$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^+ \pi^- \pi^+$	TD	[26]	Run 1	New

Many modes are combined to constrain γ :

[LHCb-CONF-2018-002]

 † Run 1 corresponds to an integrated luminosity of 3 $\,{\rm fb}^{-1}\,$ taken at centre-of-mass energies of 7 and 8 TeV . Run 2 corresponds to an integrated luminosity of 2 $\,{\rm fb}^{-1}\,$ taken at a centre-of-mass energy of 13 TeV .

State of the art: γ combination

- $D \rightarrow hh$ (ADS/GLW) provide strong constraints in r_B, δ_B, γ space, but ambiguities and non-gaussian uncertainties.
- $D \rightarrow K^0_{\rm S} hh$ modes break ambiguities
- Different correlation patterns result in combined γ uncertainty better than just plain average.
- Different analysis approaches (rates, Dalitz, time-dep) allow better control of systematic uncertainties.

[LHCb-CONF-2018-002]

Prospects for γ : GGSZ

[LHCb-PUB-2018-009: "Physics case for an LHCb Upgrade II"]

- Critical uncertainty: CLEO measurement of strong phase difference in bins. Currently: $\simeq 2^{\circ}$.
- Further reduction is possible:
 - Expect BES-III to contribute with around ×4 larger dataset.
 - Technique to obtain $D^0 \overline{D}^0$ phase difference from charm mixing fits at LHCb [JHEP 10 (2012) 185]
 - Use other $B \to DX$ decays to overconstrain phase difference, such as $B \to DK\pi$, $D \to K_S^0 \pi \pi$ [PRD 97, 056002 (2018)]
 - $\blacksquare B \to DK \text{ decays themselves constrain phase difference for sufficiently large dataset [preliminary toy MC studies]}$
- Other uncertainties depend on control or MC samples.

Assume that $1/\sqrt{N}$ scaling is valid: $\sigma(\gamma) < 1^{\circ}$ with 300 fb⁻¹

Prospects for γ : ADS/GLW and combination

[LHCb-PUB-2018-009: "Physics case for an LHCb Upgrade II"]

Main systematic uncertainties with rate and asymmetry measurements:

- Production and instrumentation asymmetries
- Backgrounds and their asymmetries.

All data-driven, so assumed to scale with data sample.

Additional subtle point to be taken into account:

- Charm mixing and CP violation in charm
- Matter effects for K⁰_S final states

New modes not used in the combination yet:

- Multibody B and D decays
- Modes with neutrals, both fully and partially-reconstructed.
- $B_c \rightarrow DD_s$: Large CPV with $r_B \simeq 1$, but very low yields (~ 1 event in Run 1)
- *b* baryons, e.g. $\Lambda_b^0 \rightarrow D\Lambda$, $Dp\bar{K}$: complication due to *S* and *P*-wave amplitudes with possibly different strong parameter. Precision depends on Λ_b^0 polarisation.

New strategies with existing modes:

- "Unified" approach for GLW/ADS/GGSZ with common treatment of systematic uncertainties [arXiv:1804.05597]
- Fourier analysis instead of binning for model-independent GGSZ approach: squeeze last bits of statistical power
 [EPJC (2018) 78: 121]

lpha , $eta_{(s)}$, γ from charmless decays

γ from charmless processes

[PRD 98, 032004 (2018)]

- Extraction of γ and β_s from time-dependent asymmetries of $B^0 \rightarrow \pi^+\pi^-$ and $B^0_s \rightarrow K^+K^-$
- Use U-spin symmetry to disentangle contributions from different topologies

Data sample	$C_{\pi^+\pi^-}$	$S_{\pi^+\pi^-}$	$C_{K^+K^-}$	$S_{K^+K^-}$	$A_{K^+K^-}^{\Delta\Gamma}$
Run 1 $(3 \text{fb}^{-1} 112)$	$-0.34 \pm 0.06 \pm 0.01$	$-0.63 \pm 0.05 \pm 0.01$	$0.20 \pm 0.06 \pm 0.02$	$0.18 \pm 0.06 \pm 0.02$	$-0.79 \pm 0.07 \pm 0.10$
			σ (stat.)		
Run 1-3 (23fb^{-1})	0.015	0.013	0.015	0.015	0.018
Run 1-6 (300fb^{-1})	0.004	0.004	0.004	0.004	0.005

Are an input to global analysis which allows to measure γ and $-2\beta_s.$ Other charmless measurements:

- $\alpha = \pi \beta \gamma$ from $B \to \pi\pi, B \to \rho\rho$: main sensitivity will come from Belle II (neutral final states)
- $B60 \rightarrow \pi^+\pi^-\pi^0$ TD Dalitz plot analysis, measure α . Expect large yields at LHCb.
- $B^0_{(s)} \to K^0_{s}hh$: determine CP violating parameters for resonant contributions, related to γ and β_s

- UT angle measurements provide essential information about CP violation mechanism, together with other CKM measurements, a sensitive probe for physics beyond SM.
- No major show-stopper for LHCb Upgrade I and Upgrade II.
- But **a lot** of efforts will be needed to make use of huge statistics of 300 fb⁻¹.
 - Computing, storage, bookkeeping
 - Analysis infrastructure
 - Personpower for many additional modes
 - Subtle systematic effects at sub-% level
 - Combination with cross-feed between tens (or hundreds) of modes
 - All of that is doable, but again, a lot of efforts will be needed.

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$\overline{R_K} \ (1 < q^2 < 6 {\rm GeV}^2 c^4)$	0.1 274	0.025	0.036	0.007	-
R_{K^*} $(1 < q^2 < 6 \text{GeV}^2 c^4)$	0.1 275	0.031	0.032	0.008	-
$R_{\phi}, R_{pK}, R_{\pi}$		0.08, 0.06, 0.18	-	0.02, 0.02, 0.05	-
CKM tests					
γ , with $B^0_s \to D^+_s K^-$	$\binom{+17}{22}^{\circ}$ 136	4°	_	1°	_
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ 167	1.5°	1.5°	0.35°	-
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 609	0.011	0.005	0.003	-
ϕ_s , with $B_s^0 \rightarrow J/\psi \phi$	49 mrad 44	14 mrad	-	4 mrad	22 mrad 610
ϕ_s , with $B_s^0 \rightarrow D_s^+ D_s^-$	170 mrad 49	35 mrad	-	9 mrad	
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad 94	39 mrad	_	11 mrad	Under study 611
a_{sl}^s	$33 imes 10^{-4}$ 211	$10 imes 10^{-4}$	_	3×10^{-4}	_
$ V_{ub} / V_{cb} $	6% 201	3%	1%	1%	-
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% 264	34%	-	10%	21% 612
$\tau_{B^0_s \rightarrow \mu^+ \mu^-}$	22% 264	8%	_	2%	
$S_{\mu\mu}$		-	-	0.2	-
$b \rightarrow c \ell^- \bar{\nu_l}$ LUV studies					
$\overline{R(D^*)}$	0.026 215 217	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 220	0.071	-	0.02	-
Charm					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} 613	1.7×10^{-4}	5.4×10^{-4}	3.0×10^{-5}	-
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} 240	4.3×10^{-5}	3.5×10^{-4}	1.0×10^{-5}	-
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} 228	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	-
$x\sin\phi$ from multibody decays	_	$(K3\pi)$ 4.0×10^{-5}	$(K_{\rm S}^0\pi\pi)$ 1.2×10^{-4}	$(K3\pi) 8.0 \times 10^{-6}$	_

[LHCb-PUB-2018-009: "Physics case for an LHCb Upgrade II"]

Backup

LHCb experiment

Covers forward region (maximum of *c* and *b* production)

Covers forward region (maximum of c and b production)

Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background

- Covers forward region (maximum of c and b production)
- Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background
- Particle identification: flavour tagging, misID background

- Covers forward region (maximum of c and b production)
- Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking

LHCb

- Covers forward region (maximum of c and b production)
- Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking
- Calorimetry: reconstruct neutrals (π^0, γ) in the final state

LHCb

- Covers forward region (maximum of *c* and *b* production)
- Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking
- Calorimetry: reconstruct neutrals (π^0, γ) in the final state
- Efficient trigger, including fully hadronic modes

 3 fb^{-1} in 2011 and 2012 (Run 1, $\sqrt{s} = 7, 8 \text{ TeV}$): Most of results in this talk 2 fb^{-1} in 2015 and 2016 (Run 2, $\sqrt{s} = 13 \text{ TeV}$, higher *b* CS): Analyses ongoing 1.71 fb^{-1} (2017) and 1.89 fb^{-1} (2018 so far) at 13 TeV

 3 fb^{-1} in 2011 and 2012 (Run 1, $\sqrt{s} = 7, 8 \text{ TeV}$): Most of results in this talk 2 fb^{-1} in 2015 and 2016 (Run 2, $\sqrt{s} = 13 \text{ TeV}$, higher *b* CS): Analyses ongoing 1.71 fb^{-1} (2017) and 1.89 fb^{-1} (2018 so far) at 13 TeV

Trigger is a crucial elements in experiments at hadron machines. Need to work in a very difficult environment with hundreds of tracks in each beam crossing.

 2011 and early 2012: increased trigger bandwidth (compared to design 2 kHz) to accommodate charm Trigger is a crucial elements in experiments at hadron machines. Need to work in a very difficult environment with hundreds of tracks in each beam crossing.

- 2011 and early 2012: increased trigger bandwidth (compared to design 2 kHz) to accommodate charm
- 2012: deferred trigger configuration: keep the trigger farm busy between fills

Trigger is a crucial elements in experiments at hadron machines. Need to work in a very difficult environment with hundreds of tracks in each beam crossing.

- 2011 and early 2012: increased trigger bandwidth (compared to design 2 kHz) to accommodate charm
- 2012: deferred trigger configuration: keep the trigger farm busy between fills
- Since 2015: *split trigger*
 - All 1st stage (HLT1) output stored on disk
 - Used for real-time calibration and alignment
 - 2nd stage (HLT2) uses offline-quality calibration
 - 5 kHz of 12 kHz to Turbo stream:
 - Candidates produced by trigger are stored
 - No raw event ⇒ smaller event size
 - Used for high-yield channels (charm, J/ψ , ...)

Analysis techniques

Time-dependent measurements

Measure lifetime based on vertex displacement from the primary vertex of *pp* interaction.

Large boost provides excellent time resolution ($\sigma_t \simeq 45$ fs)

Flavor tagging

Need to identify B flavour at production time (different from flavour at decay time due to oscillations).

Use decay products of the opposite-side B (OS) and π , K associated with same-side B (SS).

Effective tagging power $\epsilon_{\rm tag} D^2 = 3.7\%$.

