

Lepton Flavour Universality Violation and semileptonic decays

Dario Buttazzo

based on work with A. Greljo, G. Isidori, D. Marzocca

Lepton Flavour Universality

 (Lepton) flavour universality is an accidental property of the gauge Lagrangian, not a fundamental symmetry of nature

$$\mathcal{L}_{\text{gauge}} = i \sum_{j=1}^{3} \sum_{q,u,d,\ell,e} \bar{\psi}_j \not\!\!D \psi_j$$

The only non-gauge interaction in the SM violates LFU maximally

$$\mathcal{L}_{\text{Yuk}} = \bar{q}_L Y_u u_R H^* + \bar{d}_L Y_d d_R H + \bar{\ell}_L Y_e e_R H \qquad Y_{u,d,e} \approx \text{diag}(0,0,1)$$

 LFU approximately satisfied in SM processes because Yukawa couplings are small

$$y_{\mu} \approx 10^{-3} \qquad \qquad y_{\tau} \approx 10^{-2}$$

natural to expect LFU and flavour violations in BSM physics

Lepton Flavour Universality

Why is LFU often assumed to hold in BSM physics?

Lepton Flavour Universality

Why is LFU often assumed to hold in BSM physics?

Many strong experimental constraints!

The most stringent bounds involve 1st and 2nd generation fermions.

What if - like the Higgs - New Physics interacts mostly with 3rd generation?

Semi-leptonic b to c decays

Charged-current interaction: **tree-level** effect in the SM, with mild CKM suppression

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{cb}^* (\bar{b}_L \gamma_\mu c_L) (\bar{\tau}_L \gamma^\mu \nu_\tau)$$

LFU ratios:
$$R_{D^{(*)}} = \frac{{
m BR}(B o D^{(*)} au ar{
u})/{
m SM}}{{
m BR}(B o D^{(*)} \ell ar{
u})/{
m SM}} = 1.237 \pm 0.053$$

20% enhancement in LH currents 4σ from SM

- RH & scalar currents disfavoured
- SM predictions robust: form factors cancel in the ratio (to a good extent)
- Consistent results by three very different experiments, in different channels
- Large backgrounds & systematic errors

Semi-leptonic b to s decays

FCNC: occurs only at loop-level in the SM

+ **CKM** suppressed

Semi-leptonic effective Lagrangian:

$$\mathcal{L} = \frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} V_{tb}^* V_{ts} \sum_i C_i \mathcal{O}_i + C_i' \mathcal{O}_i'$$

Deviations from SM in several observables

- Angular distributions in B → K*µµ
- Various branching ratios B_(s) → X_s μμ
- LFU in R(K) and R(K*) (very clean prediction!)

Consistency between the various results:

~ 20% NP contribution to LH current
Globally 5-6σ

Semi-leptonic b to s decays

FCNC: occurs only at loop-level in the SM

+ **CKM** suppressed

Semi-leptonic effective Lagrangian:

$$\mathcal{L} = \frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} V_{tb}^* V_{ts} \sum_i C_i \mathcal{O}_i + C_i' \mathcal{O}_i'$$

Deviations from SM in several observables

- Angular distributions in $B \to K^* \mu \mu$
- Various branching ratios B_(s) → X_s μμ
- LFU in R(K) and R(K*) (very clean prediction!)

Consistency between the various results:

~ 20% NP contribution to LH current
Globally 5-6σ

What do we know?

- Anomalies seen only in semi-leptonic processes: quarks x leptons
 nothing observed in pure quark or lepton processes
- 2. Large effect in **3rd generation**: b quarks, τν competes with SM tree-level smaller non-zero effect in **2nd generation**: μμ competes with SM FCNC, no effect in 1st generation
- 3. Flavour alignment with down-quark mass basis to avoid large FCNC (true in general for BSM physics)

4. **Left-handed** four-fermion interactions

RH and scalar currents disfavoured: can be present, but do not fit the anomalies (both in charged and neutral current), Higgs-current small or not relevant

Simultaneous explanations

$$\frac{1}{\Lambda_D^2} (\bar{b}_L \gamma_\mu c_L) (\bar{\tau}_L \gamma^\mu \nu_\tau)$$

$$\Lambda_D = 3.4 \, {\rm TeV}$$

$$\frac{1}{\Lambda_K^2} (\bar{b}_L \gamma_\mu s_L) (\bar{\mu}_L \gamma^\mu \mu_L)$$

$$\Lambda_K = 31 \, {\rm TeV}$$

1. "vertical" structure: the two operators are related by gauge SU(2)L

$$(\bar{q}_L \gamma_\mu \sigma^a q_L)(\bar{\ell}_L \gamma^\mu \sigma^a \ell_L)$$

2. "horizontal" structure: NP structure reminds of the Yukawa hierarchy

$$\Lambda_D \ll \Lambda_K, \qquad \lambda_{\tau\tau} \gg \lambda_{\mu\mu}$$

1 Use Typeset Yspes of TeX and DVI

Figure 1: Degramatic representation of s-channel (left hand side) and t-channel (right-hand side) resonance expange (drawn in blue double see-saw lines) contributions to $b\bar{b} \to \tau^+ \tau^-$ process.

III. MODELS

The different chiral structures being probed by $R(D^{(*)})$ single out a handful nediator models [22]. In the followasses, where we explain forming non-trivial Q_3 and Q_3 et Q_3 scalar Q_3 vector Q_3

Table I: A set of simplified models generating $b \to c\tau\nu$ transition at tree level, classified according to the mediator spi

Effective Field Theory for semi-leptonic interactions

1. Left-handed semi-leptonic interactions: two possible operators in SM-EFT

$$C_S(\bar{q}_L^i \gamma_\mu q_L^j)(\bar{\ell}_L^\alpha \gamma^\mu \ell_L^\beta) \qquad \qquad C_T(\bar{q}_L^i \gamma_\mu \sigma^a q_L^j)(\bar{\ell}_L^\alpha \gamma^\mu \sigma^a \ell_L^\beta) \\ - \text{SU(2) singlet} - \qquad \qquad - \text{SU(2) triplet} -$$

assuming no light new particles, e.g. neutrinos! (see e.g. 1807.10745 for a different approach)

Effective Field Theory for semi-leptonic interactions

1. Left-handed semi-leptonic interactions: two possible operators in SM-EFT

$$C_S(\bar{q}_L^i \gamma_\mu q_L^j)(\bar{\ell}_L^\alpha \gamma^\mu \ell_L^\beta) \qquad \qquad C_T(\bar{q}_L^i \gamma_\mu \sigma^a q_L^j)(\bar{\ell}_L^\alpha \gamma^\mu \sigma^a \ell_L^\beta) \\ - \text{SU(2) singlet} - \qquad \qquad - \text{SU(2) triplet} -$$

2. CKM-like flavour pattern: U(2) symmetry for both quarks & leptons

i.e. coupling to third generation only: $Q_L^{(3)} \sim \begin{pmatrix} V_{ib}^* u_L^i \\ b_L \end{pmatrix}$ + small terms (~ V_CKM)

Effective Field Theory for semi-leptonic interactions

1. Left-handed semi-leptonic interactions: two possible operators in SM-EFT

$$\begin{array}{ccc} C_{S}(\bar{q}_{L}^{i}\gamma_{\mu}q_{L}^{j})(\bar{\ell}_{L}^{\alpha}\gamma^{\mu}\ell_{L}^{\beta}) & C_{T}(\bar{q}_{L}^{i}\gamma_{\mu}\sigma^{a}q_{L}^{j})(\bar{\ell}_{L}^{\alpha}\gamma^{\mu}\sigma^{a}\ell_{L}^{\beta}) \\ - & \text{SU(2) singlet } - & - \text{SU(2) triplet } - \end{array}$$

2. CKM-like flavour pattern: U(2) symmetry for both quarks & leptons

i.e. coupling to third generation only: $Q_L^{(3)} \sim \begin{pmatrix} V_{ib}^* u_L^i \\ b_L \end{pmatrix}$ + small terms (~ V_CKM)

$$\lambda_{ij}^q \approx \begin{pmatrix} \cdot & \cdot & \\ \cdot & \cdot & \\ \cdot & V_{ts}^* & 1 \end{pmatrix} \quad \lambda_{\alpha\beta}^\ell \approx \begin{pmatrix} \cdot & \cdot & \\ \cdot & |V_{\tau\mu}|^2 & \\ \cdot & V_{\tau\mu}^* & 1 \end{pmatrix} \qquad \text{4 parameters relevant for the anomalies}$$

Effective Field Theory

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^{\ell} \left[C_T(\bar{q}_L^i \gamma_\mu \sigma^a q_L^j) (\bar{\ell}_L^\alpha \gamma^\mu \sigma^a \ell_L^\beta) + C_S(\bar{q}_L^i \gamma_\mu q_L^j) (\bar{\ell}_L^\alpha \gamma^\mu \ell_L^\beta) \right]$$

LFU ratios in $b \rightarrow c$ charged currents:

T vs /:
$$R_{D^{(*)}}^{ au\ell} \simeq 1 + 2C_T \left(1 + rac{\lambda_{bs}^q}{V_{cb}}
ight) = 1.237 \pm 0.053$$

$$\mu$$
 vs e: $R_{D^{(*)}}^{\mu e} \simeq 1 + 2C_T \left(1 + \frac{\lambda_{bs}^q}{V_{cb}}\right) \lambda_{\mu\mu} < 0.02$ \longrightarrow $\lambda_{\mu\mu} \lesssim 0.1$

Effective Field Theory

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^{\ell} \left[C_T(\bar{q}_L^i \gamma_\mu \sigma^a q_L^j) (\bar{\ell}_L^\alpha \gamma^\mu \sigma^a \ell_L^\beta) + C_S(\bar{q}_L^i \gamma_\mu q_L^j) (\bar{\ell}_L^\alpha \gamma^\mu \ell_L^\beta) \right]$$

LFU ratios in $b \rightarrow c$ charged currents:

T vs /:
$$R_{D^{(*)}}^{ au\ell} \simeq 1 + 2C_T \left(1 + rac{\lambda_{bs}^q}{V_{cb}}
ight) = 1.237 \pm 0.053$$

$$\mu$$
 vs e: $R_{D^{(*)}}^{\mu e} \simeq 1 + 2C_T \left(1 + rac{\lambda_{bs}^q}{V_{cb}}
ight) \lambda_{\mu\mu} < 0.02$ \longrightarrow $\lambda_{\mu\mu} \lesssim 0.1$

Neutral currents: $b \rightarrow sv_{\tau}v_{\tau}$ transitions not suppressed by lepton spurion

$$\Delta C_{\nu} \simeq \frac{\pi}{\alpha V_{ts}^* V_{tb}} \lambda_{sb}^q (C_S - C_T) \qquad \text{strong bounds from } B \to K^* \nu \nu$$

$$\longrightarrow C_T \sim C_S$$

 $b \rightarrow s\tau\tau \sim C_T + C_S$ is large (100 x SM), weak experimental constraints

Effective Field Theory

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^{\ell} \left[C_T(\bar{q}_L^i \gamma_\mu \sigma^a q_L^j) (\bar{\ell}_L^\alpha \gamma^\mu \sigma^a \ell_L^\beta) + C_S(\bar{q}_L^i \gamma_\mu q_L^j) (\bar{\ell}_L^\alpha \gamma^\mu \ell_L^\beta) \right]$$

LFU ratios in $b \rightarrow c$ charged currents:

T vs /:
$$R_{D^{(*)}}^{ au\ell} \simeq 1 + 2C_T \left(1 + rac{\lambda_{bs}^q}{V_{cb}}\right) = 1.237 \pm 0.053$$

$$\mu$$
 vs e: $R_{D^{(*)}}^{\mu e} \simeq 1 + 2C_T \left(1 + rac{\lambda_{bs}^q}{V_{cb}}
ight) \lambda_{\mu\mu} < 0.02$ \longrightarrow $\lambda_{\mu\mu} \lesssim 0.1$

Neutral currents: $b \rightarrow sv_{\tau}v_{\tau}$ transitions not suppressed by lepton spurion

$$\Delta C_{\nu} \simeq \frac{\pi}{\alpha V_{ts}^* V_{tb}} \lambda_{sb}^q (C_S - C_T) \qquad \text{strong bounds from } B \to K^* \nu \nu$$

$$\longrightarrow C_T \sim C_S$$

 $b \rightarrow s\tau\tau \sim C_T + C_S$ is large (100 x SM), weak experimental constraints

 $b \rightarrow s\mu\mu$ is an independent quantity: $\Delta C_{9,\mu} = -\frac{\pi}{\alpha V_{ts}^* V_{tb}} \lambda_{sb}^q \lambda_{\mu\mu} (C_T + C_S)$ fixes the size of $\lambda_{\mu\mu} \sim 10^{-2}$

Radiative corrections

Purely leptonic operators generated at the EW scale by RG evolution

$$\delta g \approx \frac{v^2}{\Lambda^2} \log \frac{\Lambda}{m_{\rm W}} \quad \lesssim 10^{-3} \quad {\rm from \ LEP}$$

- LFU in τ decays τ → μνν vs. τ → eνν (effectively deviation in W couplings)
- ZTT couplings
- **Zvv** couplings (number of neutrinos)

Feruglio et al. 2015

strong bounds on the scale of NP ($C_{S,T} \leq 0.02-0.03$)

(RG-running corrections to four-quark operators suppressed by lepton masses)

UV contributions (not log-enhanced) are model-dependent

Fit to semi-leptonic observables

- EFT fit to all semi-leptonic observables + radiative corrections to EWPT
- Don't include any UV contribution to other operators (they will depend on the dynamics of the specific model)

Good fit to all anomalies, with couplings compatible with the U(2) assumption

Fit to semi-leptonic observables

- EFT fit to all semi-leptonic observables + radiative corrections to EWPT
- Don't include any UV contribution to other operators (they will depend on the dynamics of the specific model)

Good fit to all anomalies, with couplings compatible with the U(2) assumption

Testing chirality and flavour structure: charged currents

+ LH charged currents: universality of all b → c transitions:

$$BR(B \rightarrow DTV)/BR_{SM} = BR(B \rightarrow D^*TV)/BR_{SM} = BR(B_C \rightarrow \psi TV)/BR_{SM}$$

$$= BR(\Lambda_b \rightarrow \Lambda_c TV)/BR_{SM} = \dots$$

$$= BR(\Lambda_b \rightarrow \Lambda_c TV)/BR_{SM}$$

+ U(2) symmetry: $b \rightarrow c$ vs. $b \rightarrow u$ universality

$$BR(B \to D^{(*)}\tau v)/BR_{SM} = BR(B \to \pi \tau v)/BR_{SM} = BR(B^+ \to \tau v)/BR_{SM}$$
$$= BR(B_S \to K^*\tau v)/BR_{SM} = BR(\Lambda_b \to p\tau v)/BR_{SM} = \dots$$

✓ BR(
$$B_u \to \tau \nu$$
)_{exp}/BR_{SM} = 1.31 ± 0.27 (UTfit 2016)

$$\lambda_{ij}^q pprox egin{pmatrix} \cdot & V_{td} \\ V_{td}^* & V_{ts}^* & 1 \end{pmatrix}$$
 CKM matrix

Relation to other observables: neutral currents

Isidori 2017

+ any other observable with the same quark-level transition...

independent of RD

 the presence of RH/scalar currents breaks the correlation with the SM:

e.g. $B \rightarrow \mu\mu$, $B \rightarrow \tau\tau$, $B \rightarrow \tau\mu$ could be enhanced

Relation to other observables: neutral currents

Several correlated effects in other flavour observables. High-intensity program is crucial to test the flavour structure!

Relation to other observables: neutral currents

Several correlated effects in other flavour observables. High-intensity program is crucial to test the flavour structure!

Simplified models

Mediators that can give rise to the $b \rightarrow c\ell v$ and $b \rightarrow s\ell \ell$ amplitudes:

	Spin 0	Spin 1
Colour singlet	2HDM	Vector resonance
Colour triplet	Scalar lepto-quark	Vector lepto-quark

Simplified models

Mediators that can give rise to the $b \to c\ell v$ and $b \to s\ell\ell$ amplitudes:

Simplified models

Mediators that can give rise to the $b \rightarrow c\ell v$ and $b \rightarrow s\ell\ell$ amplitudes:

	Spin 0	Spin 1
Colour singlet	-2HDM no LL operator	Vector resonance
Colour triplet	Scalar lepto-quark	Vector lepto-quark

Contributions to C_T and C_S from different mediators:

- A vector leptoquark is the only single mediator that can fit all the anomalies alone: C_T ~ C_S
- Combinations of two or more mediators also possible (often the case in concrete models)
 large b → svv expected in this case!

sition at tree level, classified according to the mediator spin

leptons we assume $\lambda_{ij}^{q(\ell)} \simeq g_{b(\tau)} \delta_{i3} \delta_{j3}$, cons U(2) flavor symmetry [15]. Departures from in the quark sector are constrained by low data, including meson mixing, rare B dec LFV in τ decays and neutrino physics, a de which has been performed in Ref. [15].² The cation is that the LHC phenomenology of is predominantly determined by their conthird generation fermions $(g_b \text{ and } g_\tau)$. straint on g_b comes from its contribution to in D^0 mixing yielding $g_b/M_{W'} < 2.2 \,\mathrm{TeV}^$ other hand lepton flavor mixing effects inc neutrino masses can be neglected and thus flavor combination written above suffices v generality.

In addition, electroweak precision data r Z' components of W'^a to be degenerate up with two important implications: (1) it relate NP in charged currents at low ener

Lepton vs quark couplings: beyond U(2)

A small FV coupling to quarks required by meson mixing: implies lower scale, or large lepton-flavour violation to fit the anomalies

(In concrete models, contributions to EWPT can be calculated beyond leading log approximation... less tension)

High-pT searches at LHC

A general feature of any model: large coupling to b and τ

 \rightarrow searches in $\tau\tau$ final state at high energy at LHC

PDF of *b* quark small, but still dominant if compared to flavour suppression

s-channel resonances

must be broad to escape searches if below ~ 2 TeV

t-channel exchange: leptoquarks

ection-prepareties it is broquarks $U_{1,\mu}^{\dagger}U_{1,\mu}^{\dagger}U_{1}^{\dagger}+g_{U}(J_{U}^{\mu}U_{1,\mu}^{\dagger}U_{1,\mu}^{\dagger}U_{1,\mu}^{\dagger}U_{1,\mu}^{\dagger}U_{1,\mu}^{\dagger}U_{2$ $\begin{array}{ll} I^{\mu}_{l} \equiv \beta_{i\alpha} \, Q_{i} \gamma^{\mu} L_{\alpha} \\ \text{nplest UV realisation of the scenario emerging from} \\ \bullet \quad bb\text{-fusion, searches in } \tau \text{ invariant mass distribution} \\ \text{ret} \beta_{i\alpha} \text{lept} Q \text{ suark } b \text{ the scenario} \\ \text{shown } \text{fully } \text{ invariant mass distribution} \end{array}$ ucture air production through Of Dinteraction of the relation t the $\underline{\text{lepto}}_{i\alpha}$ $\underline{\text{quark}}_{i\alpha}$ field, the tree-level matching condition for the EF $-\mathcal{L}_{2}^{\perp}U^{\dagger}_{1},\mu\nu_{\nu}^{\perp}U^{1}_{C}C_{U}\beta_{i\alpha}\beta_{j\beta}^{*}\left[U^{\dagger}_{1},\mu\nu_{\nu}^{\perp}U^{\mu}_{1}\right] + \mathcal{L}_{2}^{\mu}U^{\dagger}_{1}U^{\mu}_{1}U^{\mu}_{2}U^{\mu}_{$ Figure 5: LQ:ntqand future projected LHE constraints on the vector legical k motel \equiv $e^{i\alpha} = 0$ $i^{\alpha} = 0$ $i^{\alpha} = 0$ $i^{\alpha} = 0$ $i^{\alpha} = 0$ The 1σ and 2σ preferred regions from the low-energy fit are shown in green and yellow, referred $i^{\alpha} = 0$ $i^{\alpha} =$ $e same flavour structure and least this LQ representation does not allow baryon humber wide ting operators and like search and the associated a tree-level contribution to <math>B_{s(t)}$ mes Cree Land of the points of the general in Section 2 can be recovered essentially without mions In the doublets with principally for bilden by the $U(2)_q$ the trapetteepetation the $\lambda_{ij(\alpha\beta)}^{q(\ell)}$ as five parameters. When marginalising we let $\beta_{s\tau}$ and $\beta_{s\mu}$ and $\beta_{s\mu}$ we let $\beta_{s\tau}$ and $\beta_{s\mu}$ and $\beta_{s\mu}$ be the previous fit, a reduced value of C_U thanks to the extra contribution to $R_{D^{(*)}}^{\tau\ell}$ proportional to β this parameter and $\beta_{s\mu}$ of $\mathcal{Q}(|V_{cb}|)$ Sparameter and $\beta_{s\mu}$ of $\mathcal{O}(|V_{cb}|)$ bespite being absent at the tree level, a contribution to $\Delta F = 2$ strongly dependent on the UV completion. Following the singly singly and the UV completion. cut-off Λ on the quadratically divergent $\Delta F = \Delta V \alpha A V$ Emplituded Ceals to

UV completions: vector leptoquark

Leptoquark quantum numbers are consistent with Pati-Salam unification

$$SU(4) \times SU(2)_L \times SU(2)_R \supset SU(3)_c \times SU(2)_L \times U(1)_Y$$

Lepton number = 4th color
$$\psi_L = (q_L^1, q_L^2, q_L^3, \ell_L) \sim (\mathbf{4}, \mathbf{2}, \mathbf{1}),$$
 $\psi_R = (q_R^1, q_R^2, q_R^3, \ell_R) \sim (\mathbf{4}, \mathbf{1}, \mathbf{2}).$

Gauge fields:
$${f 15}={f 8}_0\oplus{f 3}_{2/3}\oplus{f ar 3}_{-2/3}\oplus{f 1}_0$$
 vector leptoquark U_1^μ

- No proton decay: protected by gauge $U(1)_{B-L} \subset SU(4)$
- U_{μ} gauge vector: universal couplings to fermions!
 - \rightarrow bounds of O(100 TeV) from light fermion processes, e.g. $K \rightarrow \mu e$

UV completions: vector leptoquark

Non-universal couplings to fermions needed!

 Elementary vectors: extended gauge group color can't be completely embedded in SU(4)

$$SU(4) \times SU(3) \rightarrow SU(3)_c$$

Di Luzio et al. 2017 Isidori et al. 2017

only the 3rd generation is charged under SU(4)

• Composite vectors: resonances of a strongly interacting sector with global $SU(4) \times SU(2) \times SU(2)$ Barbieri, Tesi 2017

the couplings to fermions can be different (e.g. partial compositeness)

In all cases, additional heavy vector resonances (color octet and Z') are present

Searches at LHC!

A composite UV completion: scalar leptoquarks

New strong interaction that confines at a scale ∧ ~ few TeV

$$\Psi \sim \Box, \quad \bar{\Psi} \sim \bar{\Box}$$
 N new (vector-like) fermions
$$\langle \bar{\Psi}^i \Psi^j \rangle = -f^2 B_0 \delta^{ij} \quad \longrightarrow \quad \mathrm{SU}(N)_L \times \mathrm{SU}(N)_R \to \mathrm{SU}(N)_V$$

If the fermions are charged under SM gauge group,
 then also the pseudo Nambu-Goldstone bosons have SM charges:

$$\Psi_Q \sim (\mathbf{3}, \mathbf{2}, Y_Q), \qquad \Psi_L \sim (\mathbf{1}, \mathbf{2}, Y_L) \qquad \longrightarrow$$

 the scalar LQ are naturally light (pNGB) and couple to fermions

$$\varphi = [\bar{\Psi}\Psi] \left\{ \begin{array}{c} \Psi \\ \hline \Psi \\ \hline \Psi \end{array} \right\} \left\{ \begin{array}{c} \Psi \\ \Psi \end{array} \right\} \left\{ \begin{array}{$$

$$S_1 \sim (\mathbf{3}, \mathbf{1}, Y_Q - Y_L), \ S_3 \sim (\mathbf{3}, \mathbf{3}, Y_Q - Y_L), \ \eta \sim (\mathbf{1}, \mathbf{1}, 0), \ \pi \sim (\mathbf{1}, \mathbf{3}, 0), \cdots$$
 $H \sim (\mathbf{1}, \mathbf{2}, \pm 1/2)$

composite Higgs as a pNGB can be included in the picture

B, Greljo, Isidori, Marzocca 2017

→ Marzocca, 2018

Summary

- Lepton Flavour Universality violations: natural possibility in BSM physics.
 Present hints consistent with Yukawa-like couplings.
 Data of the coming years (months?) will confirm/disprove the picture
- High-precision program is essential to probe the flavour structure of the new interactions. Pure LH currents? U(2) symmetry? tau physics?
- Correlations/cancellations can be present in explicit models.
 Predictions might be different from general "model independent" EFT
- Leptoquarks are interesting! Pati-Salam unification? Goldstone bosons?
- Interplay between flavour / high-pT searches important.

U(2) flavour symmetry

SM Yukawa couplings exhibit an approximate U(2)³ flavour symmetry:

$$m_u \sim (\cdot \cdot \cdot)$$
 $V_{\text{CKM}} \sim (\cdot \cdot \cdot)$ $V_{\text{CKM}} \sim (\cdot \cdot \cdot \cdot \cdot \cdot)$ $V_{\text{CKM}} \sim (\cdot \cdot \cdot \cdot \cdot \cdot)$ $V_{\text{CKM}} \sim (\cdot \cdot \cdot \cdot \cdot \cdot \cdot)$ $V_{\text{CKM}} \sim (\cdot \cdot \cdot \cdot \cdot \cdot \cdot)$ $V_{\text{CKM}} \sim (\cdot \cdot \cdot \cdot \cdot \cdot \cdot)$ $V_{\text{CKM}} \sim (\cdot \cdot \cdot \cdot \cdot \cdot \cdot)$ $V_{\text{CKM}} \sim (\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot)$ $V_{\text{CKM}} \sim (\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot)$ $V_{\text{CKM}} \sim (\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot)$ $V_{\text{CKM}} \sim (\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot)$ $V_{\text{CKM}} \sim (\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot)$ $V_{\text{CKM}} \sim (\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot)$

1. Good approximation of SM spectrum: m_{light} ~ 0, V_{CKM} ~ 1

Breaking pattern:
$$Y_{u,d} \approx \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 \longrightarrow $Y_{u,d} \approx \begin{pmatrix} \Delta & V_q \\ 0 & 1 \end{pmatrix}$ $\xrightarrow{\Delta \sim (\mathbf{2},\mathbf{2},\mathbf{1})}$ $V_q \sim (\mathbf{2},\mathbf{1},\mathbf{1})$

Barbieri, B, Sala, Straub, 2012

- 2. The assumption of a single spurion V_q connecting the 3rd generation with the other two ensures MFV-like FCNC protection
- 3. Can be extended to the charged-lepton sector $m_{\ell} \sim ($)

Fit to semi-leptonic operators

Observables that enter in the fit:

Observable	Exp. bound	Linearised expression
$R_{D^{(*)}}^{ au\ell}$	1.237 ± 0.053	$1 + 2C_T(1 + \lambda_{sb}^q \frac{V_{cs}}{V_{cb}})(1 - \lambda_{\mu\mu}^{\ell}/2)$
$\Delta C_9^{\mu} = -\Delta C_{10}^{\mu}$	-0.61 ± 0.12	$-\frac{\pi}{\alpha_{\rm em} V_{tb} V_{ts}^*} \lambda_{\mu\mu}^{\ell} \lambda_{sb}^{q} (C_T + C_S)$
$R_{b\to c}^{\mu e} - 1$	0.00 ± 0.02	$2C_T(1+\lambda_{sb}^q \frac{V_{cs}}{V_{cb}})\lambda_{\mu\mu}^{\ell}$
$B_{K^{(*)}\nu\nu}$	0.0 ± 2.6	$1 + \frac{2}{3} \frac{\pi}{\alpha_{\rm em} V_{tb} V_{ts}^* C_{\nu}^{\rm SM}} (C_T - C_S) \lambda_{sb}^q (1 + \lambda_{\mu\mu})$
$\delta g^Z_{ au_L}$	-0.0002 ± 0.0006	$0.38C_T - 0.47C_S$
$N_{ u}$	2.9840 ± 0.0082	$3 - 0.19C_S - 0.15C_T$
$ g_{ au}^W/g_{\ell}^W $	1.00097 ± 0.00098	$1 - 0.09C_T$

- Include all the terms generated in the RG running
- Do not include any UV contribution to non-semi-leptonic operators (they will depend on the dynamics of the specific model)

Fit to semi-leptonic operators

- Small values of C_T required by radiative constraints
- $\lambda_{\mu\mu}$ must be negative to fit C_9 this rules out the "pure mixing" scenario in the lepton sector (where $\lambda_{\mu\mu} \sim \sin \theta_{\tau\mu}^2$)

$K \rightarrow \pi \nu \nu$

- The only s → d decay with 3rd generation leptons in the final state:
 sizeable deviations can be expected
- U(2) symmetry relates $b \to q$ transitions to $s \to d$ (up to model-dependent parameters of order 1): $\lambda_{sd} \sim V_q V_q^* \sim V_{ts}^* V_{td} \qquad \lambda_{bq} \sim V_q \sim V_{tq}^*$

Bordone, B, Isidori, Monnard 2017

Relation to other observables: $b \rightarrow s\tau\tau$

• $b \rightarrow s\tau\tau$ is determined by (λ_{bs}, C_T, C_S) only

$$\Delta C_{9,\tau} = -\frac{\pi}{\alpha V_{ts}^* V_{tb}} \lambda_{sb}^q (C_T + C_S) = \Delta C_{9,\mu} / \lambda_{\mu\mu}^{\ell}$$

large enhancements possible (up to 10²-10³): maybe in reach of Belle II

- SM value: BR($B \rightarrow K\tau\tau$) ~ 10^{-7}
- Exp. bounds:

Belle: BR($B \rightarrow K\tau\tau$) < 10^{-3}

Belle II: $\triangle BR(B \rightarrow K\tau\tau) \sim 10^{-4}-10^{-5}$

possible at LHCb?

Vector leptoquarks

SU(2)_L singlet vector LQ: $U_{\mu} \sim (\mathbf{3}, \mathbf{1}, 2/3)$

$$\mathcal{L}_{LQ} = g_U U_{\mu} \beta_{i\alpha} \left(\bar{Q}_L^i \gamma^{\mu} L_L^{\alpha} \right) + \text{h.c.}$$

$$\mathcal{L}_{\text{eff}} \supset -\frac{1}{v^2} C_U \beta_{i\alpha} \beta_{j\beta}^* \left[(\bar{Q}^i \gamma_\mu \sigma^a Q^j) (\bar{L}^\alpha \gamma^\mu \sigma^a L^\beta) + (\bar{Q}^i \gamma_\mu Q^j) (\bar{L}^\alpha \gamma^\mu L^\beta) \right]$$

$$C_U = \frac{v^2 |g_U|^2}{2m_U^2}$$

 No tree-level contribution to B_(s)-B̄_(s) mixing, but UV contributions not calculable

naïve estimate:

Scalar leptoquarks

 $\mathcal{L} \supset g_1 y_1{}_{i\alpha} (\bar{Q}_L^{c\,i} \epsilon L_L^{\alpha}) S_1 + g_3 y_3{}_{i\alpha} (\bar{Q}_L^{c\,i} \epsilon \sigma^a L_L^{\alpha}) S_3^a + \text{h.c.}$

In general, different flavour couplings of singlet and triplet

✓ Renormalisable model: no contribution to meson mixing

High-pT searches at LHC

- Single LQ production depends on the coupling to fermions
- For high masses (above the LHC reach in double production) single production becomes the dominant production mechanism

High-pT searches

LFU ratios: R(K) & $R(K^*)$

 LFU ratios are consistent with predictions from a fit to b → sµµ data only

LFU ratios: R(K) & $R(K^*)$

 LFU ratios are consistent with predictions from a fit to b → sµµ data only

 Left-Handed current necessary to have both R_K and R_{K*} < 1

Semi-leptonic effective operators

Two simple current-current structures:

1. **QQ** x **LL**

$$\mathcal{L}_{\text{eff}} \propto J_{QQ}J_{LL} + \text{h.c.}$$

$$J_{QQ}^{\mu} = \left(\bar{q}_L^i \gamma^{\mu} q_L^j\right) \left[\delta_{i3} \delta_{j3} + a_q \delta_{i3} (V_q^*)_j + a_q^* (V_q)_i \delta_{j3} + b_q (V_q)_i (V_q^*)_j\right] \equiv \lambda_{ij}^q \bar{q}_L^i \gamma^{\mu} q_L^j$$

$$J_{LL}^{\mu} = \left(\bar{\ell}_L^{\alpha} \gamma^{\mu} \ell_L^{\beta}\right) \left[\delta_{\alpha 3} \delta_{\beta 3} + a_\ell \delta_{\alpha 3} (V_\ell^*)_{\beta} + a_\ell^* (V_\ell)_{\alpha} \delta_{\beta 3} + b_\ell (V_\ell)_{\alpha} (V_\ell^*)_{\beta}\right] \equiv \lambda_{\alpha \beta}^\ell \bar{\ell}_L^{\alpha} \gamma^{\mu} \ell_L^{\beta}$$

4 + 2 free parameters:

$$\begin{pmatrix} \lambda_{bs}^q = a_q V_{ts}, \\ \lambda_{\tau\mu}^\ell = a_\ell V_{\tau\mu}, \end{pmatrix}$$

$$\lambda_{\mu\mu}^{\ell} = b_{\ell} |V_{\tau\mu}|^2,$$

$$\lambda_{sd}^{q} = b_{q} V_{ts}^* V_{td}$$

2. **LQ x QL**

$$\mathcal{L}_{ ext{eff}} \propto J_{LQ} J_{LQ}^{\dagger}$$

$$J_{LQ}^{\mu} = \left(\bar{q}_L^i \gamma^{\mu} \ell_L^{\alpha}\right) \left[\delta_{i3} \delta_{\alpha 3} + a_q^* (V_q)_i \delta_{\alpha 3} + a_\ell \delta_{i3} (V_\ell^*)_{\alpha} + b (V_q)_i (V_\ell^*)_{\alpha}\right] \equiv \beta_{i\alpha} \bar{q}_L^i \gamma^{\mu} \ell_L^{\alpha}$$

3 + 3 free parameters:
$$\beta_{s\tau}^* = a_q V_{ts}, \qquad \beta_{b\mu} = a_\ell V_{\tau\mu}, \qquad \beta_{b\mu} \beta_{s\mu}^* = a_\ell b |V_{\tau\mu}|^2$$

$$\beta_{b\mu}\beta_{s\mu}^* = a_\ell \, b |V_{\tau\mu}|^2$$

Non-equivalent, if terms with more than one spurion are considered!

High-pT searches at LHC

- Single LQ production depends on the coupling to fermions
- For high masses (above the LHC reach in double production) single production becomes the dominant production mechanism

High-pT searches at LHC

- $bb \rightarrow \mu\mu$ suppressed by small $\lambda_{\mu\mu}$ (but better experimental sensitivity)
- Searches in tails of the $\mu\mu$ invariant mass distribution:
 - MFV case already excluded

Greljo & Marzocca 2017

Not a relevant bound for U(2) models

Vector resonances

Triplet and singlet colourless vectors:

$$\mathcal{L}_{\rm int} = W_{\mu}^{\prime a} J_{\mu}^a + B_{\mu}^{\prime} J_{\mu}^0$$

$$J_{\mu}^{a} = g_{q} \lambda_{ij}^{q} \left(\bar{Q}_{L}^{i} \gamma_{\mu} T^{a} Q_{L}^{j} \right) + g_{\ell} \lambda_{\alpha\beta}^{\ell} \left(\bar{L}_{L}^{\alpha} \gamma_{\mu} T^{a} L_{L}^{\beta} \right)$$
$$J_{\mu}^{0} = \frac{g_{q}^{0}}{2} \lambda_{ij}^{q} \left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j} \right) + \frac{g_{\ell}^{0}}{2} \lambda_{\alpha\beta}^{\ell} \left(\bar{L}_{L}^{\alpha} \gamma_{\mu} L_{L}^{\beta} \right)$$

$$C_{T,S} = \frac{4v^2}{m_V^2} g_q g_\ell$$

Large contribution to Bs mixing

$$\Delta \mathcal{A}_{B_s - \bar{B}_s} \approx \frac{v^2}{m_V^2} \lambda_{bs}^2 \left(g_q^2 + (g_q^0)^2 \right)$$
$$\approx \left(C_T + C_S \right) \lambda_{bs}^2$$

Problem less severe for large $C_{T,S}$ — stronger tension with EW precision tests. In models with more couplings (e.g. Higgs current) can partially cancel the contributions

$B_{(s)}$ - $\bar{B}_{(s)}$ mixing

• Tree-level contribution to $\Delta F = 2$ amplitudes

$$\Delta A_{B_s}^{\Delta F=2} \simeq \frac{154}{(V_{tb}^* V_{ts})^2} \left[\epsilon_q^2 \lambda_{bs}^2 + (\epsilon_q^0)^2 (\lambda_{bs}^2 + (\lambda_{bs}^d)^2 - 7.14 \lambda_{bs} \lambda_{bs}^d) \right] = 0.07 \pm 0.09$$

tuning of \sim few x 10⁻³ to satisfy the constraint

 Can have a mild tuning if C_T is large. Solve the tension with radiative corrections introducing a coupling to the Higgs current...

$$\Delta J_{\mu}^{a} = \frac{1}{2} \epsilon_{H} \left(i H^{\dagger} \stackrel{\leftrightarrow}{D^{a}}_{\mu} H \right) , \qquad \Delta J_{\mu}^{0} = \frac{1}{2} \epsilon_{H}^{0} \left(i H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H \right)$$

Many free parameters, can find points with mild tuning satisfying the bounds

$$\begin{vmatrix} \epsilon_{\ell} \approx 0.2 , & \epsilon_{q} \approx 0.5 , & \epsilon_{H} \approx -0.01 , & \lambda_{sb}^{q}/|V_{cb}| \approx -0.07 , \\ \epsilon_{\ell}^{0} \approx 0.1 , & \epsilon_{q}^{0} \approx -0.1 , & \epsilon_{H}^{0} \approx -0.03 , & \lambda_{\mu\mu}^{\ell} \approx 0.2 . \end{vmatrix}$$

ATLAS heavy vector searches

