

Lepton Flavour Universality Violation and semileptonic decays

Dario Buttazzo

based on work with A. Greljo, G. Isidori, D. Marzocca

Istituto Nazionale di Fisica Nucleare

Lepton Flavour Universality

+ (Lepton) flavour universality is an accidental property of the gauge Lagrangian, not a fundamental symmetry of nature

$$
\mathcal{L}_{\text {gauge }}=i \sum_{j=1}^{3} \sum_{q, u, d, \ell, e} \bar{\psi}_{j} \not D \psi_{j}
$$

+ The only non-gauge interaction in the SM violates LFU maximally

$$
\mathcal{L}_{\text {Yuk }}=\bar{q}_{L} Y_{u} u_{R} H^{*}+\bar{d}_{L} Y_{d} d_{R} H+\bar{\ell}_{L} Y_{e} e_{R} H \quad Y_{u, d, e} \approx \operatorname{diag}(0,0,1)
$$

+ LFU approximately satisfied in SM processes because Yukawa couplings are small

$$
y_{\mu} \approx 10^{-3} \quad y_{\tau} \approx 10^{-2}
$$

\Rightarrow natural to expect LFU and flavour violations in BSM physics

Lepton Flavour Universality

Why is LFU often assumed to hold in BSM physics?

Lepton Flavour Universality

Why is LFU often assumed to hold in BSM physics?

+ Many strong experimental constraints!

$$
\tau \rightarrow \ell \nu \bar{\nu}
$$

$$
\psi \rightarrow \ell \bar{\ell}
$$

$$
\pi \rightarrow \ell \bar{\nu}
$$

+ The most stringent bounds involve 1st and 2nd generation fermions.
What if - like the Higgs - New Physics interacts mostly with 3rd generation?

Semi-leptonic b to c decays

Charged-current interaction: tree-level effect in the SM, with mild CKM suppression

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} V_{c b}^{*}\left(\bar{b}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{\tau}_{L} \gamma^{\mu} \nu_{\tau}\right)
$$

LFU ratios: $\quad R_{D^{(*)}}=\frac{\mathrm{BR}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right) / \mathrm{SM}}{\operatorname{BR}\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right) / \mathrm{SM}}=1.237 \pm 0.053$

~ 20\% enhancement in LH currents $\sim 4 \sigma$ from SM

- RH \& scalar currents disfavoured
- SM predictions robust: form factors cancel in the ratio (to a good extent)
- Consistent results by three very different experiments, in different channels
- Large backgrounds \& systematic errors

Semi-leptonic b to s decays

FCNC: occurs only at loop-level in the SM

+ CKM suppressed
Semi-leptonic effective Lagrangian:
$\mathcal{L}=\frac{4 G_{F}}{\sqrt{2}} \frac{\alpha}{4 \pi} V_{t b}^{*} V_{t s} \sum_{i} C_{i} \mathcal{O}_{i}+C_{i}^{\prime} \mathcal{O}_{i}^{\prime}$

Deviations from SM in several observables

- Angular distributions in $B \rightarrow K^{*} \mu \mu$
- Various branching ratios $B_{(s)} \rightarrow X_{s} \mu \mu$
- LFU in $\mathrm{R}(\mathrm{K})$ and $\mathrm{R}\left(\mathrm{K}^{*}\right)$ (very clean prediction!)

Consistency between the various results:
~ 20\% NP contribution to LH current
Globally $5-6 \sigma$

Semi-leptonic b to s decays

FCNC: occurs only at loop-level in the SM

+ CKM suppressed
Semi-leptonic effective Lagrangian:

$$
\mathcal{L}=\frac{4 G_{F}}{\sqrt{2}} \frac{\alpha}{4 \pi} V_{t b}^{*} V_{t s} \sum_{i} C_{i} \mathcal{O}_{i}+C_{i}^{\prime} \mathcal{O}_{i}^{\prime}
$$

Deviations from SM in several observables

- Angular distributions in $B \rightarrow K^{*} \mu \mu$
- Various branching ratios $B_{(s)} \rightarrow X_{s} \mu \mu$
- LFU in $\mathrm{R}(\mathrm{K})$ and $\mathrm{R}\left(\mathrm{K}^{*}\right)$ (very clean prediction!)

Consistency between the various results:
~ 20\% NP contribution to LH current
Globally 5-6б

What do we know?

1. Anomalies seen only in semi-leptonic processes: quarks \times leptons nothing observed in pure quark or lepton processes
2. Large effect in 3rd generation: b quarks, tv competes with SM tree-level smaller non-zero effect in 2nd generation: $\mu \mu$ competes with SM FCNC, no effect in 1st generation
3. Flavour alignment with down-quark mass basis to avoid large FCNC (true in general for BSM physics)

4. Left-handed four-fermion interactions

RH and scalar currents disfavoured: can be present, but do not fit the anomalies (both in charged and neutral current), Higgs-current small or not relevant

Simultaneous explanations

$\frac{1}{\Lambda_{D}^{2}}\left(\bar{b}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{\tau}_{L} \gamma^{\mu} \nu_{\tau}\right)$

$$
\Lambda_{D}=3.4 \mathrm{TeV}
$$

$$
\begin{gathered}
\frac{1}{\Lambda_{K}^{2}}\left(\bar{b}_{L} \gamma_{\mu} s_{L}\right)\left(\bar{\mu}_{L} \gamma^{\mu} \mu_{L}\right) \\
\Lambda_{K}=31 \mathrm{TeV}
\end{gathered}
$$

1. "vertical" structure: the two operators are related by gauge $\mathrm{SU}(2) \mathrm{L}$

$$
\left(\bar{q}_{L} \gamma_{\mu} \sigma^{a} q_{L}\right)\left(\bar{\ell}_{L} \gamma^{\mu} \sigma^{a} \ell_{L}\right)
$$

2. "horizontal" structure: NP structure reminds of the Yukawa hierarchy

$$
\Lambda_{D} \ll \Lambda_{K}, \quad \lambda_{\tau \tau} \gg \lambda_{\mu \mu}
$$

Problems

- Direct searches: large signal at high-pT

$$
\Lambda_{D} \simeq 3.4 \mathrm{TeV}
$$

- Flavour observables:
- other semi-leptonic observables model independent
- meson mixing, lepton flavour violation depend on the model, generally present
- ElectroWeak precision tests:

W, Z couplings, τ decays, ... generated radiatively at one-loop

Effective Field Theory for semi-leptonic interactions

1. Left-handed semi-leptonic interactions: two possible operators in SM-EFT

$$
\begin{array}{cc}
C_{S}\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right)\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right) & C_{T}\left(\bar{q}_{L}^{i} \gamma_{\mu} \sigma^{a} q_{L}^{j}\right)\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} \ell_{L}^{\beta}\right) \\
-\operatorname{SU}(2) \text { singlet - } & -\operatorname{SU}(2) \text { triplet - }
\end{array}
$$

assuming no light new particles, e.g. neutrinos!
(see e.g. 1807.10745 for a different approach)

Effective Field Theory for semi-leptonic interactions

1. Left-handed semi-leptonic interactions: two possible operators in SM-EFT

$$
\begin{array}{cc}
C_{S}\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right)\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right) & C_{T}\left(\bar{q}_{L}^{i} \gamma_{\mu} \sigma^{a} q_{L}^{j}\right)\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} \ell_{L}^{\beta}\right) \\
- \text { SU(2) singlet - } & - \text { SU(2) triplet - }
\end{array}
$$

2. CKM-like flavour pattern: $\mathrm{U}(2)$ symmetry for both quarks \& leptons

i.e. coupling to third generation only: $Q_{L}^{(3)} \sim\binom{V_{i b}^{*} u_{L}^{i}}{b_{L}}+$ small terms $\left(\sim V_{\mathrm{CKM}}\right)$

Effective Field Theory for semi-leptonic interactions

1. Left-handed semi-leptonic interactions: two possible operators in SM-EFT
(CS) $\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right)\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)$
(CT) $\left(\bar{q}_{L}^{i} \gamma_{\mu} \sigma^{a} q_{L}^{j}\right)\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} \ell_{L}^{\beta}\right)$

- SU(2) singlet -
- SU(2) triplet -

2. CKM-like flavour pattern: $\mathrm{U}(2)$ symmetry for both quarks \& leptons

i.e. coupling to third generation only: $Q_{L}^{(3)} \sim\binom{V_{i b}^{*} u_{L}^{i}}{b_{L}}+$ small terms $\left(\sim V_{\mathrm{CKM}}\right)$

$$
\lambda_{i j}^{q} \approx\left(\begin{array}{ccc}
\cdot & \cdot & \widehat{V_{t s}} \\
\cdot & \cdot & V_{t s}^{*} \\
\hline & 1
\end{array}\right) \quad \lambda_{\alpha \beta}^{\ell} \approx\left(\begin{array}{ccc}
\cdot & \cdot & \left(\left.V_{\tau \mu}\right|^{2}\right. \\
\cdot & \left.V_{\tau \mu}\right) \\
\cdot & V_{\tau \mu}^{*} & \mathrm{I}
\end{array}\right)
$$

4 parameters relevant for the anomalies

Effective Field Theory

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{v^{2}} \lambda_{i j}^{q} \lambda_{\alpha \beta}^{\ell}\left[C_{T}\left(\bar{q}_{L}^{i} \gamma_{\mu} \sigma^{a} q_{L}^{j}\right)\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} \ell_{L}^{\beta}\right)+C_{S}\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right)\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\right]
$$

LFU ratios in $b \rightarrow c$ charged currents:
τ vs $: \quad \quad R_{D^{(*)}}^{\tau \ell} \simeq 1+2 C_{T}\left(1+\frac{\lambda_{b s}^{q}}{V_{c b}}\right)=1.237 \pm 0.053$
μ vs e: $\quad R_{D\left({ }^{(+)}\right.}^{\mu e} \simeq 1+2 C_{T}\left(1+\frac{\lambda_{b s}^{q}}{V_{c b}}\right) \lambda_{\mu \mu}<0.02 \quad \rightarrow \quad \lambda_{\mu \mu} \lesssim 0.1$

Effective Field Theory

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{v^{2}} \lambda_{i j}^{q} \lambda_{\alpha \beta}^{\ell}\left[C_{T}\left(\bar{q}_{L}^{i} \gamma_{\mu} \sigma^{a} q_{L}^{j}\right)\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} \ell_{L}^{\beta}\right)+C_{S}\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right)\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\right]
$$

LFU ratios in $b \rightarrow c$ charged currents:

$$
\begin{array}{ll}
\tau \text { vs } I: & R_{D^{(*)}}^{\tau \ell} \simeq 1+2 C_{T}\left(1+\frac{\lambda_{b s}^{q}}{V_{c b}}\right)=1.237 \pm 0.053 \\
\mu \text { vs e: } & R_{D(*)}^{\mu e} \simeq 1+2 C_{T}\left(1+\frac{\lambda_{b s}^{q}}{V_{c b}}\right) \lambda_{\mu \mu}<0.02 \quad \longrightarrow \quad \lambda_{\mu \mu} \lesssim 0.1
\end{array}
$$

Neutral currents: $b \rightarrow \boldsymbol{S V}_{\tau} \boldsymbol{V}_{\tau}$ transitions not suppressed by lepton spurion

$$
\Delta C_{\nu} \simeq \frac{\pi}{\alpha V_{t s}^{*} V_{t b}} \lambda_{s b}^{q}\left(C_{S}-C_{T}\right) \quad \text { strong bounds from } B \rightarrow K^{*} V v
$$

$b \rightarrow s t \tau \sim C_{T}+C_{S}$ is large (100 $\times S M$), weak experimental constraints

Effective Field Theory

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{v^{2}} \lambda_{i j}^{q} \lambda_{\alpha \beta}^{\ell}\left[C_{T}\left(\bar{q}_{L}^{i} \gamma_{\mu} \sigma^{a} q_{L}^{j}\right)\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} \ell_{L}^{\beta}\right)+C_{S}\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right)\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\right]
$$

LFU ratios in $b \rightarrow c$ charged currents:

$$
\begin{array}{ll}
\tau \text { vs } \mathrm{I}: & R_{D^{(*)}}^{\tau \ell} \simeq 1+2 C_{T}\left(1+\frac{\lambda_{b s}^{q}}{V_{c b}}\right)=1.237 \pm 0.053 \\
& \mu \text { vs e: }
\end{array} \quad R_{D^{(*)}}^{\mu e} \simeq 1+2 C_{T}\left(1+\frac{\lambda_{b s}^{q}}{V_{c b}}\right) \lambda_{\mu \mu}<0.02 \quad \rightarrow \quad \lambda_{\mu \mu} \lesssim 0.1 ~ \$
$$

Neutral currents: $b \rightarrow s v_{\tau} \boldsymbol{v}_{\tau}$ transitions not suppressed by lepton spurion

$$
\Delta C_{\nu} \simeq \frac{\pi}{\alpha V_{t s}^{*} V_{t b}} \lambda_{s b}^{q}\left(C_{S}-C_{T}\right) \quad \text { strong bounds from } B \rightarrow K^{*} V V
$$

$b \rightarrow s t \tau \sim C_{T}+C_{S}$ is large ($100 \times S M$), weak experimental constraints
$b \rightarrow s \mu \mu$ is an independent quantity: fixes the size of $\lambda_{\mu \mu} \sim 10^{-2}$

$$
\Delta C_{9, \mu}=-\frac{\pi}{\alpha V_{t s}^{*} V_{t b}} \lambda_{s b}^{q} \lambda_{\mu \mu}\left(C_{T}+C_{S}\right)
$$

Radiative corrections

+ Purely leptonic operators generated at the EW scale by RG evolution

- LFU in τ decays $\tau \rightarrow \mu V V$ vs. $\tau \rightarrow \operatorname{eVV}$ (effectively deviation in W couplings)
- ZTt couplings
- Zvv couplings (number of neutrinos)
$\delta g \approx \frac{v^{2}}{\Lambda^{2}} \log \frac{\Lambda}{m_{\mathrm{W}}} \lesssim 10^{-3}$ from LEP
Feruglio et al. 2015
\longrightarrow strong bounds on the scale of NP $\left(C_{S, T} \leqslant 0.02-0.03\right)$
(RG-running corrections to four-quark operators suppressed by lepton masses)
+ UV contributions (not log-enhanced) are model-dependent

Fit to semi-leptonic observables

+ EFT fit to all semi-leptonic observables + radiative corrections to EWPT
+ Don't include any UV contribution to other operators (they will depend on the dynamics of the specific model)

Good fit to all anomalies, with couplings compatible with the $U(2)$ assumption

Fit to semi-leptonic observables

+ EFT fit to all semi-leptonic observables + radiative corrections to EWPT
+ Don't include any UV contribution to other operators (they will depend on the dynamics of the specific model)

B, Greljo, Isidori, Marzocca, 2017

Good fit to all anomalies, with couplings compatible with the $U(2)$ assumption

Testing chirality and flavour structure: charged currents

+ LH charged currents: universality of all $b \rightarrow c$ transitions:

```
\(\mathrm{BR}\left(B \rightarrow \mathrm{D} \tau \mathrm{v}^{\mathrm{L}} / \mathrm{BR}\right.\) sm \(=\mathrm{BR}\left(B \rightarrow D^{*} \tau v\right) / \mathrm{BR} \mathrm{Sm}_{\mathrm{sm}}=\mathrm{BR}\left(B_{c} \rightarrow \psi \tau v\right) / \mathrm{BR} \mathrm{Sm}_{\text {s }}\)
```

 \(=\mathrm{BR}\left(\Lambda_{b} \rightarrow \Lambda_{c} T V\right) / \mathrm{BRsm}=\ldots\)
 - the presence of RH/scalar currents breaks the correlation
example: Bordone et al. 1712.01368

$+\mathrm{U}(2)$ symmetry: $\boldsymbol{b} \rightarrow \boldsymbol{c}$ vs. $b \rightarrow \boldsymbol{u}$ universality
$\mathrm{BR}\left(B \rightarrow D^{(*)} T v\right) / \mathrm{BRsm}=\mathrm{BR}(B \rightarrow \pi \tau v) / \mathrm{BRsm}=\mathrm{BR}\left(B^{+} \rightarrow \tau v\right) / \mathrm{BR} \mathrm{Bsm}^{\prime}$
$=\mathrm{BR}\left(B_{s} \rightarrow \mathrm{~K}^{*} \tau v\right) / \mathrm{BR} \mathrm{Sm}_{\mathrm{sm}}=\mathrm{BR}\left(\Lambda_{b} \rightarrow p \tau v\right) / \mathrm{BR}_{s m}=\ldots$
$\checkmark \mathrm{BR}\left(B_{u} \rightarrow \tau v\right)$ exp $/ \mathrm{BR}$ sm $=1.31 \pm 0.27$ (UTfit 2016)

Relation to other observables: neutral currents

e.g. $B \rightarrow \mu \mu, B \rightarrow \pi, B \rightarrow \tau \mu$ could be enhanced

Relation to other observables: neutral currents

Several correlated effects in other flavour observables. High-intensity program is crucial to test the flavour structure!

Relation to other observables: neutral currents

Lepton flavour

			$\mu \mu$ (ee)	$\tau \tau$	$v^{2} \mathrm{SU}$ (2)	$\tau \mu$
		$\mathrm{b} \rightarrow \mathrm{s}$	$\begin{aligned} & \mathrm{R}_{\mathrm{K}}, \mathrm{R}_{\mathrm{K}^{*}} \\ & \mathrm{O}(20 \%) \end{aligned}$	$\begin{array}{r} \mathrm{B} \rightarrow \mathrm{~K}^{(*)} \tau \tau \\ \rightarrow 100 \times \mathrm{SM} \end{array}$	$\begin{gathered} \mathrm{B} \rightarrow \mathrm{~K}^{(*)} v v \\ \mathrm{O}(1) \end{gathered}$	$\begin{gathered} \mathrm{B} \rightarrow \mathrm{~K} \tau \mu \\ \rightarrow \sim 10^{-6} \end{gathered}$
		$b \rightarrow d$	$\begin{aligned} & \mathrm{B}_{\mathrm{d}} \rightarrow \mu \mu \\ & \mathrm{~B} \rightarrow \pi \mu \mu \\ & \mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{~K}^{(*)} \mu \mu \\ & \mathrm{O}(20 \%)\left[\mathrm{R}_{\mathrm{K}}=\mathrm{R}_{\pi}\right] \end{aligned}$	$\begin{gathered} \mathrm{B} \rightarrow \pi \tau \tau \\ \rightarrow 100 \times \mathrm{SM} \end{gathered}$	$\begin{gathered} \mathrm{B} \rightarrow \pi v v \\ \mathrm{O}(1) \end{gathered}$	$\begin{gathered} \mathrm{B} \rightarrow \pi \tau \mu \\ \rightarrow \sim 10^{-7} \end{gathered}$
		$\mathrm{s} \rightarrow \mathrm{d}$	long-distance pollution	NA	$\mathrm{K} \rightarrow \pi v v$ O (1)	$N A$

Several correlated effects in other flavour observables. High-intensity program is crucial to test the flavour structure!

Simplified models

Mediators that can give rise to the $b \rightarrow c \ell v$ and $b \rightarrow s \ell \ell$ amplitudes:

	Spin 0	Spin 1
Colour singlet	$2 H D M$	Vector resonance
Colour triplet	Scalar lepto-quark	Vector lepto-quark

Simplified models

Mediators that can give rise to the $b \rightarrow c \ell v$ and $b \rightarrow s \ell \ell$ amplitudes:

Simplified models

Mediators that can give rise to the $b \rightarrow c \ell v$ and $b \rightarrow s \ell \ell$ amplitudes:

	Spin 0	Spin 1
Colour singlet	2HDMA no LL- operator	Vector resonance
Colour triplet	Scalar lepto-quark	Vector lepto-quark

Contributions to C_{T} and C_{s} from different mediators:

- A vector leptoquark is the only single mediator that can fit all the anomalies alone: $C_{T} \sim C_{S}$
- Combinations of two or more mediators also possible (often the case in concrete models) large $b \rightarrow$ sVV expected in this case!

Other observables

In most explicit models, four-quark and four-lepton operators are also present

- B_{d} and B_{s} mixing:

O(few \%) deviations from SM expected, already in tension with present bounds in most models (vector resonances)

- CP violation in D mixing:

O(0.1 \%) effects

- $\tau \rightarrow 3 \mu:$
large effect expected, possibly close to experimental bound, $B R \sim 10^{-9}$
- I vs $\mu \mathrm{LFU}:$
$\mathrm{O}(0.1 \%)$ deviation in $\tau \rightarrow \mu \mathrm{vv}$ vs. $\tau \rightarrow \mathrm{evv}$ and in $\mathrm{G}_{F}(\mathrm{~T})$ vs. $\mathrm{G}_{\mathrm{F}}(\mu)$

Lepton vs quark couplings: beyond U(2)

A small FV coupling to quarks required by meson mixing: implies lower scale, or large lepton-flavour violation to fit the anomalies
(In concrete models, contributions to EWPT can be calculated beyond leading log approximation... less tension)

High-pT searches at LHC

A general feature of any model: large coupling to b and τ

- searches in $\pi \tau$ final state at high energy at LHC

PDF of b quark small, but still dominant if compared to flavour suppression

+ s-channel resonances

must be broad to escape searches if below $\sim 2 \mathrm{TeV}$
+ t-channel exchange: leptoquarks

High-pT searches at LHC: leptoquarks

+ bb-fusion, searches in $\tau \tau$ invariant mass distribution
+ Pair-production through QCD interaction
Faroughy, Greljo Kamenik 2016

If heavier than ~ 1.3 TeV, could not be visible at LHC!
\longrightarrow
HL-LHC or HE-LHC needed to probe the best-fit region

UV completions: vector leptoquark

Leptoquark quantum numbers are consistent with Pati-Salam unification

$$
S U(4) \times S U(2)_{L} \times S U(2)_{R} \supset S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}
$$

Lepton number $=4$ th color $\quad \psi_{L}=\left(q_{L}^{1}, q_{L}^{2}, q_{L}^{3}, \ell_{L}\right) \sim(\mathbf{4}, \mathbf{2}, \mathbf{1})$,

$$
\psi_{R}=\left(q_{R}^{1}, q_{R}^{2}, q_{R}^{3}, \ell_{R}\right) \sim(\mathbf{4}, \mathbf{1}, \mathbf{2}) .
$$

Gauge fields: $\mathbf{1 5}=\mathbf{8}_{0} \oplus \mathbf{3}_{2 / 3} \oplus \overline{\mathbf{3}}_{-2 / 3} \oplus \mathbf{1}_{0}$
vector leptoquark U_{1}^{μ}

+ No proton decay: protected by gauge $U(1)_{B-L} \subset S U(4)$
+ U_{μ} gauge vector: universal couplings to fermions!
- bounds of $\mathrm{O}(100 \mathrm{TeV})$ from light fermion processes, e.g. $K \rightarrow \mu e$

UV completions: vector leptoquark

Non-universal couplings to fermions needed!

- Elementary vectors: extended gauge group color can't be completely embedded in SU(4)

$$
S U(4) \times S U(3) \rightarrow S U(3)_{c}
$$

Di Luzio et al. 2017
Isidori et al. 2017
only the 3rd generation is charged under $\operatorname{SU(4)}$

- Composite vectors: resonances of a strongly interacting sector with global $S U(4) \times S U(2) \times S U(2)$ Barbieri, Tesi 2017
the couplings to fermions can be different (e.g. partial compositeness)

In all cases, additional heavy vector resonances (color octet and Z^{\prime}) are present

Searches at LHC!

A composite UV completion: scalar leptoquarks

+ New strong interaction that confines at a scale $\wedge \sim$ few TeV

$$
\begin{aligned}
& \Psi \sim \square, \quad \bar{\Psi} \sim \bar{\square} \quad \text { N new (vector-like) fermions } \\
& \left\langle\bar{\Psi}^{i} \Psi^{j}\right\rangle=-f^{2} B_{0} \delta^{i j} \quad \rightarrow \quad \mathrm{SU}(N)_{L} \times \mathrm{SU}(N)_{R} \rightarrow \mathrm{SU}(N)_{V}
\end{aligned}
$$

* If the fermions are charged under SM gauge group, then also the pseudo Nambu-Goldstone bosons have SM charges:

$$
\begin{aligned}
& \Psi_{Q} \sim\left(\mathbf{3}, \mathbf{2}, Y_{Q}\right), \quad \Psi_{L} \sim\left(\mathbf{1}, \mathbf{2}, Y_{L}\right) \\
& \text { e scalar LQ are naturally light (pNGB) }
\end{aligned}
$$

$$
\begin{gathered}
\frac{\begin{array}{l}
S_{1} \sim\left(\mathbf{3}, \mathbf{1}, Y_{Q}-Y_{L}\right), \\
S_{3}
\end{array} \sim\left(\mathbf{3}, \mathbf{3}, Y_{Q}-Y_{L}\right),}{\eta \sim(\mathbf{1}, \mathbf{1}, 0),} \\
\pi \sim(\mathbf{1}, \mathbf{3}, 0), \cdots
\end{gathered}
$$

$$
\varphi=[\bar{\Psi} \Psi]\left\{\begin{array}{l}
\frac{\Psi}{\xi_{b}^{\xi} \xi^{6}} \\
\frac{b_{0}}{\Psi}
\end{array} ڭ_{\psi}^{\psi}\right.
$$

+ composite Higgs as a pNGB can be included in the picture

[^0]
Summary

+ Lepton Flavour Universality violations: natural possibility in BSM physics. Present hints consistent with Yukawa-like couplings. Data of the coming years (months?) will confirm/disprove the picture
- High-precision program is essential to probe the flavour structure of the new interactions. Pure LH currents? $\mathrm{U}(2)$ symmetry? tau physics?
+ Correlations/cancellations can be present in explicit models. Predictions might be different from general "model independent" EFT
+ Leptoquarks are interesting! Pati-Salam unification? Goldstone bosons?
+ Interplay between flavour / high-pT searches important.

U(2) flavour symmetry

SM Yukawa couplings exhibit an approximate $\mathrm{U}(2)^{3}$ flavour symmetry:

$$
V_{\mathrm{CKM}} \sim\left(\begin{array}{lll}
\bullet & \bullet & \cdot \\
\bullet & 0 & \cdot \\
\cdot & \bullet & 0
\end{array}\right)
$$

$$
\begin{aligned}
& U(2)_{q_{L}} \times U(2)_{u_{R}} \times U(2)_{d_{R}} \\
& \psi_{i}=\left(\psi_{1}^{2} \psi_{2}+\frac{1}{\psi_{3}}\right)
\end{aligned}
$$

1. Good approximation of $S M$ spectrum: $m_{\text {light }} \sim 0, \mathrm{~V}_{\text {СКМ }} \sim 1$

Barbieri, B, Sala, Straub, 2012
2. The assumption of a single spurion V_{q} connecting the 3rd generation with the other two ensures MFV-like FCNC protection
3. Can be extended to the charged-lepton sector

$$
m_{\ell} \sim(
$$

-)

Fit to semi-leptonic operators

Observables that enter in the fit:

Observable	Exp. bound	Linearised expression
$R_{D^{(*)}}^{\text {l }}$	1.237 ± 0.053	$1+2 C_{T}\left(1+\lambda_{s b}^{q} V_{c_{c s}}\right)\left(1-\lambda_{\mu \mu}^{\ell} / 2\right)$
$\Delta C_{9}^{\mu}=-\Delta C_{10}^{\mu}$	-0.61 ± 0.12	$-\frac{\pi}{V_{c \mathrm{~m}} V_{t b} V_{t s}^{*}} \lambda_{\mu \mu}^{l} \lambda_{s b}^{q}\left(C_{T}+C_{S}\right)$
$R_{b \rightarrow c}^{\mu e}-1$	0.00 ± 0.02	$2 C_{T}\left(1+\lambda_{s b}^{q} \frac{V_{c s}}{V_{c b}} \lambda_{\mu \mu}^{\ell}\right.$
$B_{K^{(*)} \nu \nu}$	0.0 ± 2.6	$1+\frac{2}{3} \frac{\pi}{\alpha_{\mathrm{em}} V_{t b} V_{t s}^{*} C_{V}^{S M}}\left(C_{T}-C_{S}\right) \lambda_{s b}^{q}\left(1+\lambda_{\mu \mu}\right)$
$\delta g_{\tau_{L}}^{Z}$	-0.0002 ± 0.0006	$0.38 C_{T}-0.47 C_{S}$
N_{ν}	2.9840 ± 0.0082	$3-0.19 C_{S}-0.15 C_{T}$
$\left\|g_{\tau}^{W} / g_{\ell}^{W}\right\|$	1.00097 ± 0.00098	$1-0.09 C_{T}$

- Include all the terms generated in the RG running
- Do not include any UV contribution to non-semi-leptonic operators (they will depend on the dynamics of the specific model)

Fit to semi-leptonic operators

- Small values of C_{T} required by radiative constraints
- $\lambda_{\mu \mu}$ must be negative to fit C_{9}
this rules out the "pure mixing" scenario in the lepton sector (where $\lambda_{\mu \mu} \sim \sin \theta_{\tau \mu}{ }^{2}$)
- The only $s \rightarrow d$ decay with 3rd generation leptons in the final state: sizeable deviations can be expected
- $\mathrm{U}(2)$ symmetry relates $b \rightarrow q$ transitions to $s \rightarrow d$ (up to modeldependent parameters of order 1): $\lambda_{s d} \sim V_{q} V_{q}^{*} \sim V_{t s}^{*} V_{t d} \quad \lambda_{b q} \sim V_{q} \sim V_{t q}^{*}$

Bordone, B, Isidori, Monnard 2017

Relation to other observables: $b \rightarrow s \tau \tau$

- $\boldsymbol{b} \rightarrow \boldsymbol{s t t}$ is determined by $\left(\lambda_{b s}, C_{T}, C_{s}\right)$ only

$$
\Delta C_{9, \tau}=-\frac{\pi}{\alpha V_{t s}^{*} V_{t b}} \lambda_{s b}^{q}\left(C_{T}+C_{S}\right)=\Delta C_{9, \mu} / \lambda_{\mu \mu}^{\ell}
$$

large enhancements possible (up to $10^{2}-10^{3}$): maybe in reach of Belle II

- SM value: $\mathrm{BR}(B \rightarrow K \pi \tau) \sim 10^{-7}$
- Exp. bounds:

Belle: $\mathrm{BR}(B \rightarrow K \pi T)<10^{-3}$
Belle II: $\triangle \mathrm{BR}(B \rightarrow K \pi \tau) \sim 10^{-4}-10^{-5}$
possible at LHCb?

Vector leptoquarks

$\mathrm{SU}(2) \mathrm{L}$ singlet vector LQ: $\quad U_{\mu} \sim(\mathbf{3}, \mathbf{1}, 2 / 3)$

$$
\mathcal{L}_{\mathrm{LQ}}=g_{U} U_{\mu} \beta_{i \alpha}\left(\bar{Q}_{L}^{i} \gamma^{\mu} L_{L}^{\alpha}\right)+\text { h.c. }
$$

- $C_{T}=C_{S}$ automatically satisfied at tree-level

$$
\begin{gathered}
\mathcal{L}_{\text {eff }} \supset-\frac{1}{v^{2}} C_{U} \beta_{i \alpha} \beta_{j \beta}^{*}\left[\left(\bar{Q}^{i} \gamma_{\mu} \sigma^{a} Q^{j}\right)\left(\bar{L}^{\alpha} \gamma^{\mu} \sigma^{a} L^{\beta}\right)+\left(\bar{Q}^{i} \gamma_{\mu} Q^{j}\right)\left(\bar{L}^{\alpha} \gamma^{\mu} L^{\beta}\right)\right] \\
C_{U}=\frac{v^{2}\left|g_{U}\right|^{2}}{2 m_{U}^{2}}
\end{gathered}
$$

- No tree-level contribution to $\mathrm{B}_{(\mathrm{s})}-\bar{B}_{(\mathrm{s})}$ mixing, but UV contributions not calculable naïve estimate:

Colorless vector

Scalar leptoquarks

High-pT searches at LHC

- Single LQ production depends on the coupling to fermions
- For high masses (above the LHC reach in double production) single production becomes the dominant production mechanism
$p p \rightarrow S \tau$ important search channel, for couplings that fit the anomalies

$M_{S}(\mathrm{GeV})$

High-pT searches

LFU ratios: $\mathrm{R}(\mathrm{K}) \& \mathrm{R}\left(K^{*}\right)$

LFU ratios: $\mathrm{R}(\mathrm{K}) \& \mathrm{R}\left(K^{*}\right)$

Semi-leptonic effective operators

Two simple current-current structures:

1. $\mathbf{Q Q} \times \mathrm{LL} \quad \mathcal{L}_{\text {eff }} \propto J_{Q Q} J_{L L}+$ h.c.
$J_{Q Q}^{\mu}=\left(\bar{q}_{L}^{i} \gamma^{\mu} q_{L}^{j}\right)\left[\delta_{i 3} \delta_{j 3}+a_{q} \delta_{i 3}\left(V_{q}^{*}\right)_{j}+a_{q}^{*}\left(V_{q}\right)_{i} \delta_{j 3}+b_{q}\left(V_{q}\right)_{i}\left(V_{q}^{*}\right)_{j}\right] \equiv \lambda_{i j}^{q} \bar{q}_{L}^{i} \gamma^{\mu} q_{L}^{j}$
$J_{L L}^{\mu}=\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\left[\delta_{\alpha 3} \delta_{\beta 3}+a_{\ell} \delta_{\alpha 3}\left(V_{\ell}^{*}\right)_{\beta}+a_{\ell}^{*}\left(V_{\ell}\right)_{\alpha} \delta_{\beta 3}+b_{\ell}\left(V_{\ell}\right)_{\alpha}\left(V_{\ell}^{*}\right)_{\beta}\right] \equiv \lambda_{\alpha \beta}^{\ell} \bar{\beta}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}$
$4+2$ free parameters:

$$
\begin{gathered}
\lambda_{b s}^{q}=a_{q} V_{t s}, \\
\lambda_{\tau \mu}^{\ell}=a_{\ell} V_{\tau \mu},
\end{gathered}
$$

$$
\frac{\lambda_{\mu \mu}^{\ell}=b_{\ell}\left|V_{\tau \mu}\right|^{2},}{\lambda_{s d}^{q}=b_{q} V_{t s}^{*} V_{t d}}
$$

2. $\mathbf{L Q} \times \mathbf{Q L} \quad \mathcal{L}_{\text {eff }} \propto J_{L Q} J_{L Q}^{\dagger}$
$J_{L Q}^{\mu}=\left(\bar{q}_{L}^{i} \gamma^{\mu} \ell_{L}^{\alpha}\right)\left[\delta_{i 3} \delta_{\alpha 3}+a_{q}^{*}\left(V_{q}\right)_{i} \delta_{\alpha 3}+a_{\ell} \delta_{i 3}\left(V_{\ell}^{*}\right)_{\alpha}+b\left(V_{q}\right)_{i}\left(V_{\ell}^{*}\right)_{\alpha}\right] \equiv \beta_{i \alpha} \bar{q}_{L}^{i} \gamma^{\mu} \ell_{L}^{\alpha}$
$3+3$ free parameters:

$$
\beta_{s \tau}^{*}=a_{q} V_{t s}, \quad \beta_{b \mu}=a_{\ell} V_{\tau \mu},
$$

$$
\beta_{b \mu} \beta_{s \mu}^{*}=a_{\ell} b\left|V_{\tau \mu}\right|^{2}
$$

Non-equivalent, if terms with more than one spurion are considered!

High-pT searches at LHC

- Single LQ production depends on the coupling to fermions
- For high masses (above the LHC reach in double production) single production becomes the dominant production mechanism
$p p \rightarrow S \tau$ important search channel, for couplings that fit the anomalies

$M_{S}(\mathrm{GeV})$

High-pT searches at LHC

- $b b \rightarrow \mu \mu$ suppressed by small $\lambda_{\mu \mu}$ (but better experimental sensitivity)
- Searches in tails of the $\mu \mu$ invariant mass distribution:
- MFV case already excluded
- Not a relevant bound for $U(2)$ models

Vector resonances

Triplet and singlet colourless vectors:

$$
\mathcal{L}_{\mathrm{int}}=W_{\mu}^{\prime a} J_{\mu}^{a}+B_{\mu}^{\prime} J_{\mu}^{0}
$$

$$
\begin{aligned}
& J_{\mu}^{a}=g_{q} \lambda_{\lambda_{j}^{q}}\left(\bar{Q}_{L}^{i} \gamma_{\mu} T^{a} Q_{L}^{j}\right)+g_{\ell} \lambda_{\alpha \beta}^{\ell}\left(\bar{L}_{L}^{\alpha} \gamma_{\mu} T^{a} L_{L}^{\beta}\right) \\
& J_{\mu}^{0}=\frac{g_{q}^{0}}{2} \lambda_{i j}^{q}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)+\frac{g_{\ell}^{0}}{2} \lambda_{\alpha \beta}^{\ell}\left(\bar{L}_{L}^{\alpha} \gamma_{\mu} L_{L}^{\beta}\right)
\end{aligned}
$$

$$
C_{T, S}=\frac{4 v^{2}}{m_{V}^{2}} g_{q} g_{\ell}
$$

Large contribution to B_{s} mixing

$$
\begin{aligned}
\Delta \mathcal{A}_{B_{s}-\bar{B}_{s}} & \approx \frac{v^{2}}{m_{V}^{2}} \lambda_{b s}^{2}\left(g_{q}^{2}+\left(g_{q}^{0}\right)^{2}\right) \\
& \approx\left(C_{T}+C_{S}\right) \lambda_{b s}^{2}
\end{aligned}
$$

Problem less severe for large $\mathrm{C}_{\mathrm{T}, \mathrm{S}}$ - stronger tension with EW precision tests. In models with more couplings (e.g. Higgs current) can partially cancel the contributions

$\mathrm{B}_{(\mathrm{s})}-\overline{\mathrm{B}}_{(\mathrm{s})}$ mixing

- Tree-level contribution to $\Delta \mathrm{F}=2$ amplitudes

$$
\Delta A_{B_{s}}^{\Delta F=2} \simeq \frac{154}{\left(V_{t b}^{*} V_{t s}\right)^{2}}\left[\epsilon_{q}^{2} \lambda_{b s}^{2}+\left(\epsilon_{q}^{0}\right)^{2}\left(\lambda_{b s}^{2}+\left(\lambda_{b s}^{d}\right)^{2}-7.14 \lambda_{b s} \lambda_{b s}^{d}\right)\right]=0.07 \pm 0.09
$$

tuning of \sim few $\times 10^{-3}$ to satisfy the constraint

- Can have a mild tuning if C_{T} is large. Solve the tension with radiative corrections introducing a coupling to the Higgs current...

$$
\Delta J_{\mu}^{a}=\frac{1}{2} \epsilon_{H}\left(i H^{\dagger}{\stackrel{\leftrightarrow}{D^{a}}}_{\mu} H\right), \quad \Delta J_{\mu}^{0}=\frac{1}{2} \epsilon_{H}^{0}\left(i H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H\right)
$$

Many free parameters, can find points with mild tuning satisfying the bounds

$$
\begin{array}{lll}
\epsilon_{\ell} \approx 0.2, & \epsilon_{q} \approx 0.5, & \epsilon_{H} \approx-0.01, \\
\epsilon_{\ell}^{0} \approx 0.1, & \lambda_{s b}^{q} /\left|V_{c b}\right| \approx-0.07 \\
\hline
\end{array}
$$

ATLAS heavy vector searches

[^0]: B, Greljo, Isidori, Marzocca 2017
 \Rightarrow Marzocca, 2018

