Dark sector physics with LHCb

XIII meeting on B physics (Marseille; October 1 - 3, 2018) Synergy between LHC and SuperKEKB in the Quest for New Physics

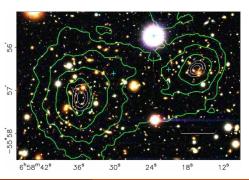
Carlos Vázquez Sierra

on behalf of the LHCb collaboration

Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands.

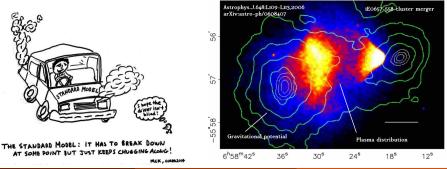
October 2, 2018

Introduction


What are and why dark sectors?

- The SM is the most successful theory describing subatomic particles and their interactions.
- But also an incomplete theory \rightarrow *i.e.* inability to explain dark matter (DM):
 - Very small fraction of the Universe composed by ordinary matter \rightarrow DM is very abundant.
 - DM does not interact with ordinary matter but exhibits gravitational effects.
- Several proposals to tackle the DM problem \rightarrow one of them are the **dark sectors**:
 - Collection of particles and forces disconnected from the SM:
 - \rightarrow Dark particles are **neutral under SM interactions** \rightarrow no interaction with ordinary matter.
 - \rightarrow Dark particles are **massive** \rightarrow affected by gravitational interactions.
 - Depending on the complexity of the dark sector → neutrino masses, baryon asymmetry, etc.

AT SOME POINT BUT JUST KEEPS CHUGGING ALONG!

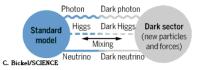

MCK, COSM20H

Introduction

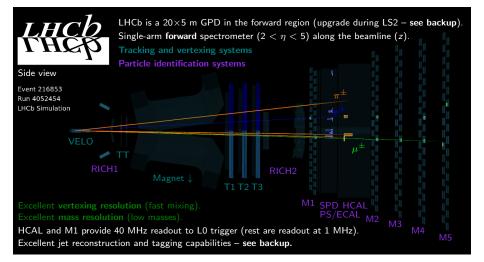
What are and why dark sectors?

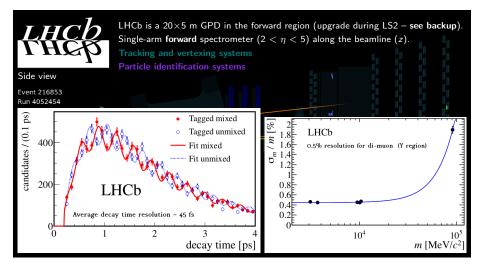
- The SM is the most successful theory describing subatomic particles and their interactions.
- But also an **incomplete theory** \rightarrow *i.e.* inability to explain **dark matter (DM)**:
 - Very small fraction of the Universe composed by ordinary matter \rightarrow DM is very abundant.
 - DM does not interact with ordinary matter but exhibits gravitational effects.
- Several proposals to tackle the DM problem \rightarrow one of them are the **dark sectors:**
 - Collection of particles and forces disconnected from the SM:
 - \rightarrow Dark particles are **neutral under SM interactions** \rightarrow no interaction with ordinary matter.
 - \rightarrow Dark particles are **massive** \rightarrow affected by gravitational interactions.
 - Depending on the complexity of the dark sector → neutrino masses, baryon asymmetry, etc.

XIII meeting on B physics (Marseille)


Introduction

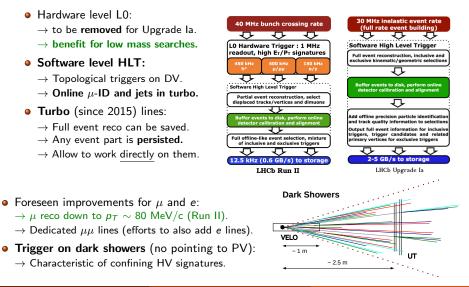
Looks great... but how can we test this if there is no interaction with SM?


- Existence of a mediator coupled to SM \rightarrow portal interactions:
 - \rightarrow Strongly constrained by SM symmetries \rightarrow coupling to SM strongly suppressed.
- Encoded as a mixing term in the lagrangian (depends on mediator spin and parity):
 → Axion (pseudoscalar), vector, Higgs (scalar) and neutrino (lepton) portals.
- Look for SM signatures from dark particle decays via these portals: \rightarrow Set limits in the coupling strength to SM \rightarrow *i.e.* ϵ^2 (dark photons), f_a (ALPs)...
- Small couplings with SM typically lead to **longer lifetimes** (if stable in their dark sector):
 - \rightarrow Can elude current limits especially for low masses and very displaced vertices.
 - \rightarrow In general dark sectors are poorly tested © want to know more? © [arXiv:1608.08632]

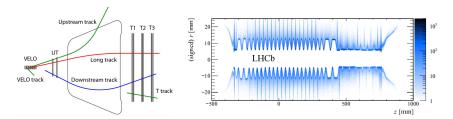

Dark sector

Dark matter could also be particles from a shadowy dark sector that interact with standard particles through subtle mixing.

LHCb and Belle 2 can play a decisive role in this intensity frontier!



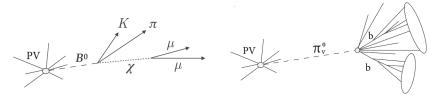
- Very soft and versatile trigger system.
 - Hardware level L0:
 - \rightarrow to be **removed** for Upgrade Ia.
 - \rightarrow benefit for low mass searches.
 - Software level HLT:
 - \rightarrow Topological triggers on DV.
 - \rightarrow Online μ -ID and jets in turbo.
 - Turbo (since 2015) lines:


• Foreseen improvements for μ and e:

- \rightarrow Full event reco can be saved.
- \rightarrow Any event part is **persisted.**
- \rightarrow Allow to work directly on them.

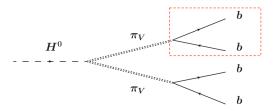
• Tracks with tracking stations & VELO hits (a.k.a. long tracks):

- Excellent spatial and momentum resolution.
- Reconstruction of particles decaying within VELO (most of our DS searches).
- Presence of a VELO envelope (RF-foil) at \sim 5 mm from beam:
 - \rightarrow Background dominated by heavy flavour below 5 mm.
 - \rightarrow Background dominated by **material interactions** above 5 mm.
- Having a precise model of material interactions is crucial.
- A detailed VELO material veto map is used: [JINST 13 (2018) P06008]
 - \rightarrow Sensitivity **improvement** by **one** to **two** orders of magnitude.
 - \rightarrow See **backup** for more details on the material veto map.
- Downstream tracks and upstream tracks see backup.


Direct searches at LHCb

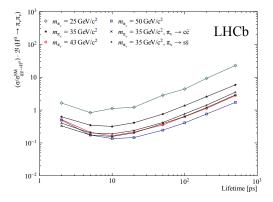
The two low-mass hunters – similar but different:

- Different production modes (pp collider \rightarrow larger x-sections),
- Different environment (ee collider \rightarrow much less background),
- Different design (LHCb is not hermetic \rightarrow no MET \rightarrow invisibles are difficult, *i.e.* ν),
- Different capabilities ($\beta\gamma$ much more smaller in Belle 2 \rightarrow access to longer lifetimes).


High LHCb capabilities to exploit low masses and low lifetimes:

- Search for candidates produced in the pp collision:
 - Dark pions produced via SM Higgs and decaying into two jets,
 - Dark photons decaying into pairs of muons,
 - Dark bosons in the mass region close to the Υ resonances,
 - Axion-like particles (ALPs) decaying into pairs of photons.
- Search for candidates produced in *B*-hadron decays see backup.

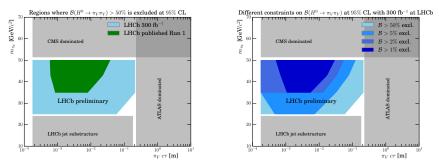
Dark pions decaying into jet pairs [EPJC (2017) 77 812]


- Possible scenarios to accommodate this signature (LLP \rightarrow jet pairs):
 - LSP in gravity mediated/BNV or LNV SUSY models,
 - HV π_{ν} decaying to $b\bar{b}$ especially with SM-like $H^0 \rightarrow \pi_{\nu}\pi_{\nu}$ production.
- In most of the cases **only one** of the two π_{ν} decays into the LHCb acceptance.
- Experimental signature is a single displaced vertex with two associated jets.

- Reconstruct the displaced vertex and find two associated jets.
- Use π_v detachment to **discriminate** between signal and background.
- Background dominated by $b\bar{b}$ events and material interactions.

Dark pions decaying into jet pairs [EPJC (2017) 77 812]

• Limits with partial LHCb Run I (2 fb⁻¹) dataset published (95% C.L. below):



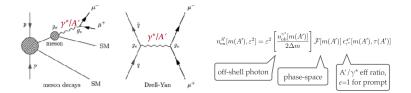
- No excess found analyse LHCb Run II + lower π_{ν} masses (jet substructure): \rightarrow New dedicated trigger selections for displaced jets present during 2018 data-taking.
- Dark showers model \rightarrow confining HV [PRD 97 (2018) 095033]:
 - \rightarrow Possible models with few GeV Z' (few MeV π_{v} with $\tau \sim \mathcal{O}(m)$) instead of SM H^{0} ,
 - \rightarrow Also π_v final states not only $b\bar{b}$ but also leptons.

Carlos Vázquez Sierra

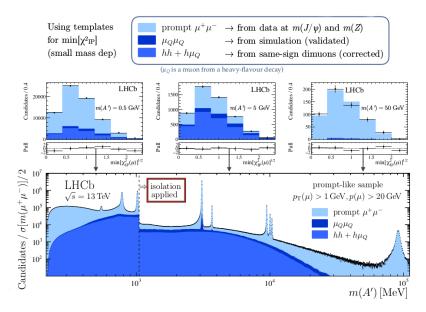
Dark pions decaying into jet pairs [EPJC (2017) 77 812]

• Naive prospects for Upgrade II (loose assumptions):

● L0 removal (Upgrade Ia) highly beneficial → access to lower jet masses.

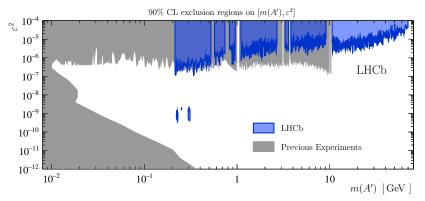

• Higher pile-up in Upgrade II:

- Impact of pile-up on jet reconstruction efficiencies needs to be studied in much detail.
- We have reasons to be optimistic preliminary studies ongoing + ideas (see below).
- Some possible improvements to mitigate the effect of the increased pile-up:
 - Remove neutrals (more pile-up dependent) from jet reco (only charged tracks).
 - Consider ML techniques to seize pile-up contributions as in ATLAS and CMS.

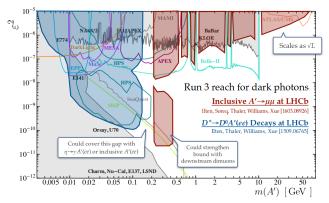

Dark Photons [PRL (2018) 120 061801]

Search for dark photons decaying into a pair of muons:

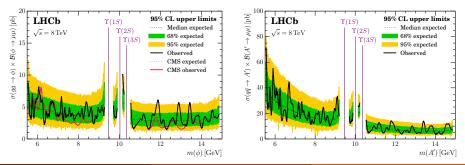
- Kinetic mixing of the dark photon (A') with off-shell photon (γ^*) by a factor ε :
 - **(**) A' inherits the production mode mechanisms from γ^* .
 - 2 $A' \rightarrow \mu^+ \mu^-$ can be normalised to $\gamma^* \rightarrow \mu^+ \mu^-$.
 - **(**) No use of MC \rightarrow no systematics from MC \rightarrow fully data-driven analysis!
- Separate γ^* signal from background and measure its fraction.
- Prompt-like search (up to 70 GeV/ c^2) \rightarrow displaced search (214 350 MeV/ c^2).
 - A' is long-lived only if the mixing factor is really small.
- Used 1.6 fb⁻¹ of 2016 LHCb data (13 TeV).



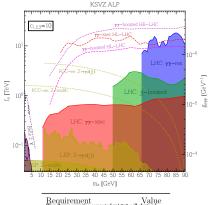
Dark Photons [PRL (2018) 120 061801]


Dark Photons [PRL (2018) 120 061801]

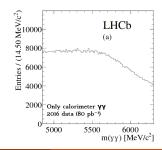
- Displaced search is performed as well see **backup** for details.
- No significant excess found exclusion regions at 90% C.L.:
 - \rightarrow First limits on masses above 10 GeV & competitive limits below 0.5 GeV.
 - \rightarrow Small displaced A' region excluded \rightarrow first limit ever not from beam dump.
- Future prospects for this search see **backup**.


Dark Photons – the future

- Cover di-electron final states in $D^{*0} \rightarrow D^0 A'(ee)$ decays:
 - \rightarrow Hardwareless trigger is required (softer final state than in the di-muon mode),
 - \rightarrow High statistics \rightarrow get $3 \times 10^{11} D^{0}$ per inverse fb!
- Extend searches model-independently:
 - \rightarrow Recast in other vector models [JHEP 06 (2018) 004]
 - \rightarrow Recast in (pseudo-)scalar models [arXiv:1802.02156]
- Prospected reach for Run III comparison with Belle 2 and other experiments:


Light dark bosons decaying into $\mu\mu$ [JHEP 09 (2018) 147]

- Light spin-0 particles copiously produced in gluon-gluon fusion:
 - Many models: NMSSM, 2HDM+S, etc.
 - Recent review on LHC searches: [arXiv:1802.02156]
- Search using LHCb Run 1 (3 fb^{-1}) recently published in JHEP.
- Look for a di-muon resonance from 5.5 to 15 GeV/ c^2 (also between Υ peaks):
 - Mass-interpolated efficiencies in bins of p_T , η (model independent results also given).
 - Production x-section (8 TeV) limits for a scalar (vector) boson on the left (right).
 - First scalar limits between 8.7 and 11.5 GeV/c^2 and competitive with CMS elsewhere.
- $\bullet~$ No excess observed \circledast for more details \rightarrow ask me during the coffee break \circledast


ALPs decaying into pairs of photons

- Constraints from LHC resonance searches above $m_a\sim$ 60 GeV/c² ($a
 ightarrow\gamma$, jj).
- But poor limits for low masses \rightarrow use $\gamma\gamma$ x-section measurements. [PLB (2018) 06 039]
- LHCb could cover the region between 3 and 10 GeV/c^2 (see talk by K. Tobioka).

(fransverse energies computed w/ 2x2 of	ell clusters)
$E_{\rm T}(\gamma)$ [GeV]	> 3.5
$E_{\mathrm{T}}(\gamma_1) + E_{\mathrm{T}}(\gamma_2) [\mathrm{GeV}]$	> 8
$M(\gamma_1\gamma_2)$ [GeV/ c^2]	[3.5, 6.0]
$p_{\rm T}(\gamma_1\gamma_2)$ [GeV/c]	> 2

- Trigger algorithm for **soft** $\gamma\gamma$ searches:
 - Uses converted and calorimeter γ ,
 - 2 Pre-filters candidates by E_T ,
 - ${f 0}$ Combines two candidates to form $\gamma\gamma$,
 - Iters again by E_T , p_T and $\gamma\gamma$ mass.
- Two trigger selections so far: [LHCb-PUB-2018-006]
 - \rightarrow Cut around $m(B_s^0)$ (since 2015).
 - \rightarrow Mass range extended to 12 GeV/c² (only 2018).
- Planned search using 2018 LHCb data.

• LHCb proved to be very competitive for dark sector searches:

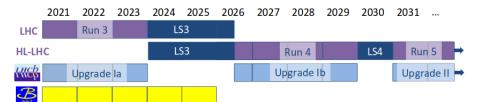
- Excellent vertexing, tracking and soft trigger.
- Especially competitive for low masses and lifetimes.
- Rich variety of models and signatures can be approached.
- Bright prospects for the future:
 - $\bullet\,$ Removal of hardware trigger \to access softer kinematics.
 - Better vertex resolution and tracking capabilities.
 - New techniques under development for ideas on new signatures.
- Exploit complementarity with Belle 2 in the hunt of dark sectors:
 - $\bullet~$ Different machines $\rightarrow~$ different limitations and capabilities.
 - But different regions in dark sector parameter spaces can be covered.
- LHC LLP workshop at Nikhef (23rd-25th October 2018) \rightarrow indico here.
- We are looking forward to ideas for new signatures and techniques:
 - Do not hesitate to contact us if interested!

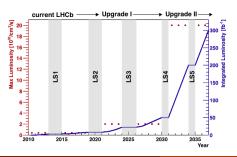
Thanks for your attention!

Backup

- Portal = communication between SM and HS via a spontaneously broken U(1) group.
- Several mechanisms depending on the nature of the gauge bosons are involved.

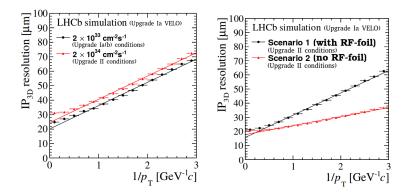
Example of a vector portal (dark photon):


• Consider a basic HS with a new gauge group U(1)' spontaneously broken:


$$-\frac{1}{4}X^{\mu\nu}X_{\mu\nu} + \frac{1}{2}m_{A'}^2A'_{\mu}A'^{\mu} \longrightarrow \left[-\frac{\epsilon}{2}F^{\mu\nu}X_{\mu\nu}\right]$$

- Get rid of the kinetic mixing term by diagonalising :
 - "Mass" basis → changes particles mass → A interacts with EM charged SM particles → NO!
 - "Interaction" basis \rightarrow A' γ oscillation due to small mass mixing \rightarrow OK! Interaction via loop:

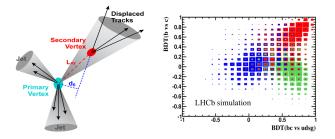
Physics case for an LHCb Upgrade II: Opportunities in flavour physics, and beyond, in the HL-LHC era [CERN-LHCC-2018-027]


- **Challenging conditions** higher rate, pile-up, occupancy and fluence.
- Expect to collect 300 fb⁻¹ by the end of Upgrade II.
- Detector sub-systems have to be able to cope with such conditions.
- In particular trigger and tracking systems are crucial for DS searches.

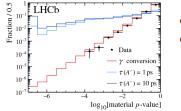
The upgraded LHCb VELO

• Upgrade II VErtex LOcator: [CERN-LHCC-2017-003]

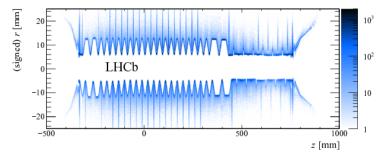
- Probably based on Upgrade Ia VELO (silicon pixels).
- Access to shorter lifetimes, better PV and IP resolution, and real-time alignment.
- But 10x multiplicity, pile-up and radiation damage w.r.t. Upgrade Ia(b).
- Possibility of removing RF-foil for Upgrade II:


 \rightarrow better IP resolution + no material interactions.

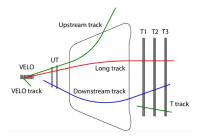
Jet reconstruction and identification at LHCb


• Jet reconstruction: [JHEP (2014) 01 033]

- Particle flow algorithm (including neutral recovery) → jet input.
- Anti- k_T algorithm for clustering (R = 0.5) \rightarrow efficiency > 95% for p_T > 20 GeV.
- Jet energy scale calibrated on data (using $Z \rightarrow \mu \mu + \text{jets}$),
- Energy resolution from 10 to 15% for a p_T range between 10 and 100 GeV.
- Secondary Vertex (SV) identification and jet tagging: [JINST 10 (2015) P06013]
 - Reconstruct SV from displaced tracks → kinematic and quality requirements on both,
 - Train two Boosted Decision Trees (BDTs) for a two-step jet flavour tagging:
 - SV displacement from PV, kinematics, charge and multiplicity;
 - SV corrected mass, defined as $M_{corr}(SV) = \sqrt{M^2 + p^2 \sin^2\theta} + p \sin\theta$.
 - BDT(bc|udsg) to separate light and heavy flavour jets, BDT(b|c) to separate b from c-jets.
 - Tagging efficiency of b(c)-jets of 65% (25%) with 0.3% contamination from light jets.



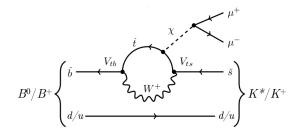
VELO material map [JINST 13 (2018) P06008]


- Background dominated by material interactions for displaced searches at LHCb.
- Mandatory to keep control of material interactions veto them in an efficient way:

- Background mainly due to γ conversions (left plot).
- A new VELO material map has been developed:
 - Model in great detail both sensors & envelope.
 - Assign a **p-value** to material interaction hypothesis.
 - Sensitivity improvement by O(10) to O(100).
 - Based on data from beam-gas collisions (plot below).

The LHCb reconstruction

• Downstream tracks:

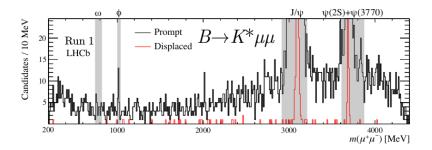

- Reconstruction of particles decaying beyond VELO.
- Tracks with worse vertex and momentum resolution.
- Trigger on downstream tracks \rightarrow better for LLP ($\leq 2 \text{ m}$) signatures.
- Optimisation studies on-going [LHCb-PUB-2017-005]

• Upstream tracks:

- Reconstruction of soft charged particles bending out of the acceptance.
- New tracker (UT) high granularity, closer to beam pipe.
- Proposal to add magnet stations (MS) inside the magnet \rightarrow improve low p resolution.

Hidden-sector bosons in $B \to K^{(*)}\chi(\mu^+\mu^-)$

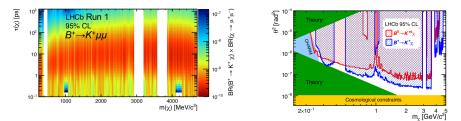
- ${
 m B^0}
 ightarrow {\cal K^{*0}}\chi$ [PRL 115 (2015) 161802] / ${
 m B^+}
 ightarrow {\cal K^+}\chi$ [PRD 95 (2017) 071101 (R)]
- Search for hidden-sector bosons $\chi \to \mu^+ \mu^-$ in $b \to s$ penguin decays:
 - Axial-vector portal (χ as axion) [LNP 741 (2008) 3]
 - Scalar (Higgs) portal (χ as inflaton) [JHEP 05 (2010) 10]



- First dedicated search $(K^{*0}\chi)$ over such a large mass range:
 - Pro: $K^{*0} \to K^+ \pi^-$ vertex leads to better $\tau(\chi)$ resolution and less background.
 - Con: $B^0 \to K^{*0}\chi$ has smaller branching fraction than the $B^+ \to K^+\chi$ mode.

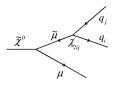
Allow for prompt and detached di-muon candidates – up to 1000 ps (~ 30 cm).

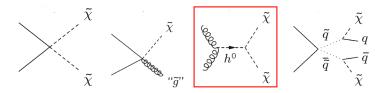
Hidden-sector bosons in $B \to K^{(*)}\chi(\mu^+\mu^-)$


- Full LHCb Run I dataset (3 fb⁻¹) used for both searches.
- Look for a narrow di-muon peak (mass resolution between 2 and 9 MeV/c²).
- Exclude narrow QCD resonances mass distribution: [PRL 115 (2015) 161802]

MVA selection almost independent of χ mass and decay time (uBoost).

Hidden-sector bosons in $B \to K^{(*)}\chi(\mu^+\mu^-)$


- BR normalised to $\mathcal{B}(B^+ \to K^+ J/\psi)$ (~ 10⁻⁴) or $\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)$ (~ 10⁻⁷).
- Constraints on $\tau(\chi)$ between 0.1 and 1000 ps (left), [PRD 95 (2017) 071101 (R)]
- Constraints on mixing angle θ^2 between the Higgs and χ in the inflaton model (right):



- No evidence for signal observed.
- Large fraction of allowed inflaton parameter space ruled out.

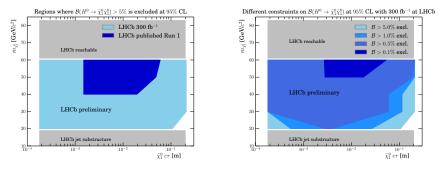
Massive LLPs decaying to μ + jets [EPJC (2017) 77:224]

- Massive LLP into μ + two quarks (\rightarrow jets).
- Signature sensitive to several benchmark models:
 - mSUGRA RPV neutralino,
 - Right-handed (Majorana) neutrinos,
 - Simplified MSSM production topologies:

- One particular example: decay of a Higgs-like particle into two LLPs.
- Look for a single displaced vertex with several tracks + high p_T muon.
- Background dominated by $b\bar{b}$ events and material interactions.

Massive LLPs decaying to μ + jets [EPJC (2017) 77:224]

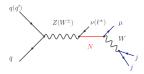
- Search with full Run I (3 fb⁻¹) LHCb data published last year.
- Results interpreted in $H^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ benchmark model:

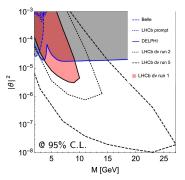


- Stringent limits rejecting $\mathcal{B}(H^0 \to \chi \chi) > 10\%$ down to 30 GeV/c² (5 ps).
- No excess observed.

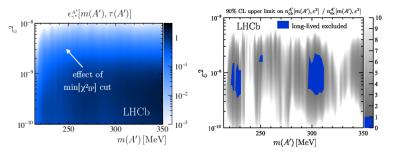
Massive LLPs decaying to μ + jets [EPJC (2017) 77:224]

• Prospects for Phase-II \rightarrow some **naive extrapolations** below:

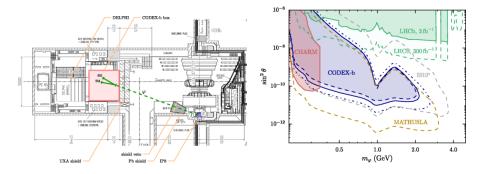

- Scale signal and background consider increase of cross-sections,
- Conservative assumptions for jet reco, trigger, and material interactions,
- Optimistic assumptions for pile-up effect.


- Our main aim is to reach lower masses and lower lifetimes.
- Removal of L0 trigger (Phase-I) → much higher trigger efficiencies at the end!
- Jet reconstruction efficiencies will be better for lower masses.
- Expected a better knowledge of material interactions (x3 less for UIa VELO).

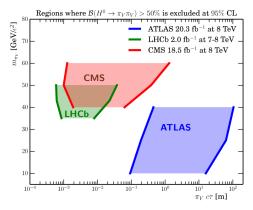
Massive LLPs decaying to μ + jets (recast)


• Limits recasted to look into sterile neutrinos [PLB (2017) 774 114-118]

- Could we get best world-limit (5–10 GeV/ c^2) with same kind of search?
- Dedicated search with Run II data in preparation.



- Looser requirements on muon tranverse momentum.
- Material background mainly from photon conversions [JINST 13 (2018) P06008]
- Isolation decision tree from B⁰_s → μ⁺μ⁻ search: [PRL (2018) 118 191801]
 → Supress events with additional number of tracks, i.e. μ from b-hadron decays.
- Fit in bins of mass and lifetime use consistency of decay topology χ^2 .
- Extract p-values and confidence intervals from the fit:


Extended reach for LLPs (CODEX-b + LHCb)

- Compact detector for exotics: [PRD 97 (2018) 015023]
 - Box of tracking layers to search for decays-in-flight of LLPs generated at IP8.
 - Interface with LHCb for identification and partial reconstruction of possible LLP events.
- Prospects for several benchmark models studied:
 - Prospects (various detectors) for $B \to X_s \varphi$ (φ as a light scalar) shown below.
 - LHCb has already provided limits for this signature using Run 1 data [PRD 115 (2015) 161802]

Complementarity with ATLAS and CMS

- Keep complementarity between LHCb, ATLAS and CMS:
 - Detector acceptance and vertexing capabilities play an important role.
 - LHCb can reach lifetime and masses that ATLAS & CMS can not and vice-versa.
- An example Run 1 search for pair produced Hidden Valley π_v via SM Higgs decay:
 - CMS 18.5 fb⁻¹ [PRD 91 (2015) 012007], recast [PRD 92 (2015) 073008]
 - ATLAS 20.3 fb⁻¹ [PRD 92 (2015) 012010] [PLB 743 (2015) 15-34]
 - Parameter space where $\mathcal{B}(H^0 \to \pi_v \pi_v) > 50\%$ is excluded at 95% confidence level:

