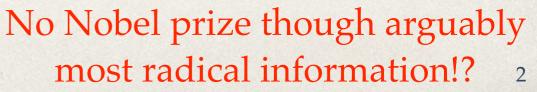
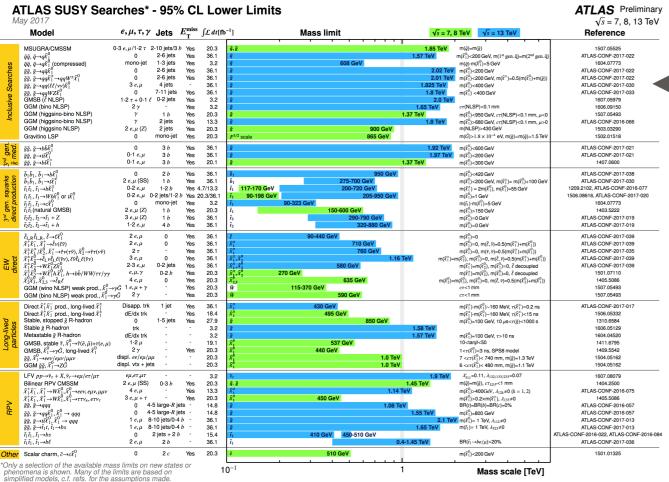
Prospects for finding new physics with theory and experiment Aoife Bharucha,

CPT Marseille


XIII Meeting on B Physics : Synergy between LHC and SUPERKEKB in the Quest for New Physics

3rd October 2018

Events drastically changing our viewpoint of BSM physics

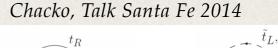

- CKM triangle measurement at Belle / Babar 2008.
- The Higgs in 2012 (note that in the wikipedia article they mention "the origin of mass", this is somewhat solved though the origins of the hierarchy in flavours is unexplained)
- Non-observations in FCNCs@B factories, at collider and Dark matter experiments (and the flavour anomalies?)

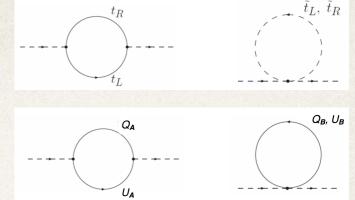
ATLAS summary plots

Show that for coloured particles the bounds stretch to 1.5 TeV, whereas for electroweak particles more like 500 GeV

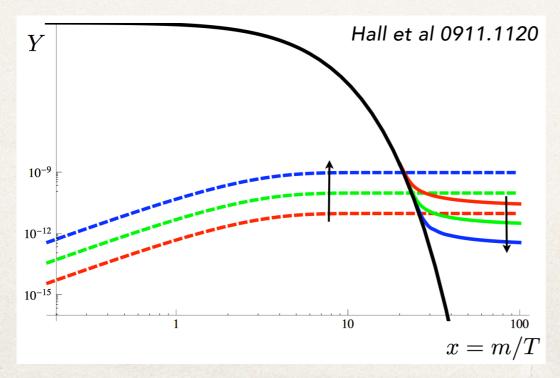
SUSY searches

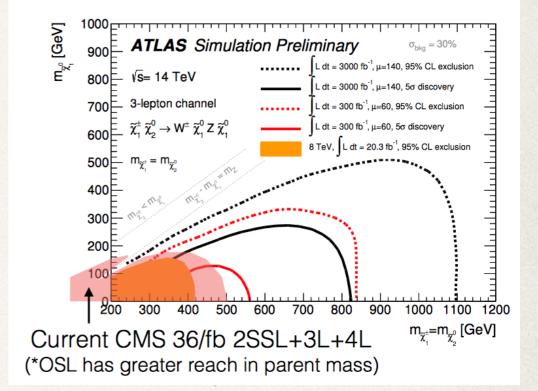
exotic searches


ATLAS Exotics	Searches*	- 95%	CL	Upper	Exclusion	Limits
Status: July 2017						


ATLAS Preliminary (£ dt = (3.2 - 37.0) fb⁻¹ \sqrt{s} = 8, 13 TeV

Model	1.7 .	Jets?	E ^{min} T	jz age	-		-	Reference
ADD G _{DR} + 4/9 ADD non-resonant yy ADD dBH high ∑ py ADD BH high ∑ py ADD BH high ∑ py ADD BH high ∑ py BD BH Ric G _{DR} → ty BD BH Ric G _{DR} → WW → qq/x 20ED / IMP	2+,# 2y 21+,# 2y 1+,# 1+,# 2	1-4) - 2j 2j 2j - 1J - - - - - - - - - - - - -	945 - - - 145 145	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg M	2.25 Sev 8.4 TeV 8.5 TeV 8.2 Sev 9.35 TeV 8.1 Sev 1.4 TeV 1.4 TeV	$\begin{array}{l} s=2\\ s=146,250,0\\ s=6\\ s=6, M_0=3$ TeV, so the state of the sta	APLAN CONF 0017-000 CEMINERF-0017-110 1735-0017 1935-0017 1935-0017 1935-0017 1935-0017 201700-0017-0017-001 APLAN CONF 0017-001 APLAN CONF 0018-100
$\begin{array}{cccc} & \mathrm{SSM} \ \mathcal{X}^* \to \mathcal{U} \\ & \mathrm{SSM} \ \mathcal{X}^* \to \mathcal{U} \\ & \mathrm{Completellit} \ \mathcal{X}^* \to \mathcal{U} \\ & \mathrm{Completellit} \ \mathcal{X}^* \to \mathcal{U} \\ & \mathrm{SSM} \ \mathcal{W}^* \to \mathcal{U} \\ & \mathrm{SSM} \ \mathcal{W}^* \to \mathcal{U} \\ & \mathrm{RSM} \ \mathcal{W}^* \to \mathcal{U} \\ & \mathrm{RSM} \ \mathcal{W}^*_{\mathrm{R}} \to \mathcal{U} \\ & \mathrm{RSM} \ \mathcal{W}^*_{\mathrm{R}} \to \mathcal{U} \end{array}$	1 e.y B 0 e.y multi-channel 1 e.y	26 16.212 23 23 25,01j 216.14	Yes The	06.1 06.1 3.2 3.2 06.1 06.7 26.1 20.5 20.3	2 maa 2 ma 2 m	4.5 TeV 2.4 TeV 2.6 TeV 2.0 TeV 3.5 TeV 2.85 TeV 2.85 TeV 3.82 TeV	$f_{clm} = 35_0$ $g_{cl} = 3$ $g_{cl} = 3$	ATLAS.COMP 4813-362 ATLAS.COMP 4813-366 ATLAS.COMP 4913-364 ATLAS.COMP 4913-364 STREAMING ODIRE-DP-361 1-147 ATLAS.COMP 4914-147 STREAMING STREAMING STREAMING
Clieges Cliffes Cliffes	2 4.9 2(55)/23 4.9 1	2) - 216,21)	- 1445	27.0 26.1 29.3	λ λ λ	CO TW	21.8 TeV 40.1 TeV 40. Keel = 1	1735-ND17 AFLAS-CONF-8017-001 1334-04005
Avial-vector mediator (Dirac DM) Vector mediator (Dirac DM) VV(zz DFT (Dirac DM)	04,0,17	1-4] 51] 5751]	Nes Nes	58.1 58.1 3.2		LB INVE	$\begin{array}{l} g_{q}\!$	AFLAS CONF 2017 06 1734-00818 1606-02773
Scalar LD 1 ⁴ gen Scalar LD 2 ¹⁴ gen Scalar LD 3 ¹⁴ gen	2+ 2µ 1+,9	22) 22) 216,23)	- 140	32 32 29.3	10 mars 1.8 Te 10 mars 1.85 Te 10 mars 640 GeV		$\beta = 1$ $\beta = 1$ $\beta = 0$	1626-041235 1626-041235 1536-047235
$\begin{array}{l} \label{eq:holestargenergy} \mbox{MO BD} \rightarrow \m$	14.9 2	18,23 18,232 29,23 22215) 160 2) 160 1 160	13.2 36.1 36.1 20.3 20.3 36.1 20.3	R mass 700 GeV. D mass 790 GeV		$\begin{split} \theta(T \to bb) &= 1 \\ \theta(B \to bb) &= 3 \end{split}$	ATLAS-CONF-4816-104 1016-10191 OE794-DF-3017-314 1106-54006 1449-5500 OE794-DF-3017-314 1100-34001
Decled quark $q' \rightarrow qq$ Decled quark $q' \rightarrow qq$ Decled quark $q' \rightarrow qq$ Decled quark $b' \rightarrow bq$ Decled quark $b' \rightarrow bq$ Decled quark $b' \rightarrow bq$ Decled quark $b' \rightarrow bq$	1 y 1 or 2 e. p 5 e. p 5 e. p, t	2) 1) 10,1) 10,2-0) -	- - %s	27.0 26.7 13.3 20.3 20.3 20.3	ef man ef man V man V man V man V man	6.5 TWY 5.2 TWY 2.3 TWY 3.0 TWY 3.0 TWY	$\begin{array}{l} \cos(q e^{-} a cd e^{+}, h=m(q^{+})\\ \sin(q e^{-} a cd e^{-}, h=m(q^{+})\\ f_{0}^{*}=f_{1}^{*}=f_{0}^{*}=1\\ h=1,0 \ \ her \\ h=1,0 \ \ her \\ h=1,0 \ \ her \end{array}$	1/105/84/27 CDRN-DF-0017-148 AFLAS-COVF-0219-000 TU105/02494 1411/2501 1411/2501
LifeSM Minjorana v Higgs triplet At ⁺⁺ → 12 Higgs triplet At ⁺⁺ → 12 Montocop (non-res peod) Multi-charged particles Magnetic monopoles	2 x,y 2,3,4 x,y (55) 3 x,y,1 1 x,y -	2) - 16 -	- - Nos -	29.3 36.1 29.3 29.3 29.3 7.0		2.0 TeV	$\label{eq:production} \begin{split} & e_{i}^{(M)}(y_{i}) = 2.4 \ \mbox{field} & \mbox{Dr} \ \mbox{production} \\ & \mbox{Dr} \ \mbox{production} & \mbox{field} &$	1004.04120 AFLAS.COV.2017.05 1111.2021 1114.2421 1014.04108 1034.04108 1034.04108
"Only a selection of the available	in a tev	v 5 = 1		s or phe	10-1	1 1	⁰ Mass scale [TeV]	3


1 Small radius (large radius) lets are denoted by the letter ((J).


Theoretical ways forward I: Hierarchy problem alternatives:

- Models escaping LHC bounds: split SUSY, light higgsinos
 Graham et al 2015, Nelson et al 2017
- Twin Higgs/Neutral naturalness particles which explain cancellation of top loop not coloured, Hierarchy problem still solved by symmetries Chacko et al 2005
- Relaxion Hierarchy problem not directly controlled by symmetries, weak scale selected by dynamics

Conventional DM alternatives: Heavy (Sommerfeld enhancement)-100 TeV collider. Alternative mechanisms to freeze-out e.g. freeze-in, still testable at next generation DD experiments. Beneke AB et al 2016

Theoretical ways forward II

See Dario Buttazzo's talk

- * Look for weakly coupled particles / very light particles, axions (CP problem) or axion-like particles (ALPs), as mediators between SM and dark sector. Testable at flavour/astrophysics/cosmology and dedicated experiments.
 Isidori, LHCb implications 2017
- B anomaly driven model building: Correlate with other channels via EFT,
 Leptoquarks, Z', new ideas for unifications, test via further measurements
- Lattice QCD: much progress recently, crucial inputs for B physics, g-2, DM...

E.g.: correlations among down-type FCNCs [using the results of U(2)-based EFT]:						
	μμ (ee)	ττ	νν	τμ	μe	
$b \rightarrow s$	R _K , R _{K*} O(20%)	$B \rightarrow K^{(*)} \tau \tau$ $\rightarrow 100 \times SM$	$B \rightarrow K^{(*)} vv$ $O(1)$	$B \rightarrow K \tau \mu$ $\rightarrow \sim 10^{-6}$	$ B \rightarrow K \mu e $	
$b \rightarrow d$	$B_{d} \rightarrow \mu\mu$ $B \rightarrow \pi \mu\mu$ $B_{s} \rightarrow K^{(*)} \mu\mu$ $O(20\%) [R_{K}=R_{\pi}]$	$B \rightarrow \pi \tau \tau$ $\rightarrow 100 \times SM$	$B \rightarrow \pi vv$ $O(1)$	$B \rightarrow \pi \tau \mu$ $\rightarrow \sim 10^{-7}$	B → π μe ???	
$s \rightarrow d$	long-distance pollution	NA	$K \rightarrow \pi vv$ $O(1)$	NA	K → μe ???	

Theoretical ways forward II

Look for weakly coupled particles/ very light particles, e.g. axions (CP problem) or axion-like particles (ALPs), as mediators between SM and dark sector. Testable at flavour/astrophysics/cosmology and dedicated
 Isidori, LHCb implications 2017

 E.g.: correlations among down-type FCNCs [using the results of U(2)-based EFT]:

 Flavour probes/model
 building: Anomalies in b to s and b to c channels, lepton
 flavour plays important role:
 Correlate with other channels
 via EFT, Leptoquarks, Z',
 new ideas for unifications,
 test via further
 measurements

		μμ (ee)	ττ.	VV	τμ	με	
to s n ole:	$b \rightarrow s$	R _K , R _{K*} O(20%)	$B \rightarrow K^{(*)} \tau \tau$ $\rightarrow 100 \times SM$	$B \rightarrow K^{(*)} \nu \nu$ $O(1)$	$B \to K \tau \mu$ $\longrightarrow \sim 10^{-6}$	B → K μe ???	
nels	$b \rightarrow d$	$B_{d} \rightarrow \mu\mu$ $B \rightarrow \pi \mu\mu$ $B_{s} \rightarrow K^{(*)} \mu\mu$ $O(20\%) [R_{K}=R_{\pi}]$	$B \rightarrow \pi \tau \tau$ $\rightarrow 100 \times SM$	$B \rightarrow \pi \nu \nu$	$B \rightarrow \pi \tau \mu$ $\rightarrow \sim 10^{-7}$	$B \rightarrow \pi \mu e$	
	$s \rightarrow d$	long-distance pollution	NA	$K \rightarrow \pi vv$ $O(1)$	NA	K → μe ???	~

171

ΤΤ

* Lattice QCD: much progress recently, crucial inputs for B physics, g-2, DM...

Contents

- Models with light mediators and motivation
- Generation of dark matter + cosmological constraints
- Searches/prospects at Belle II
- Searches/prospects at LHCb

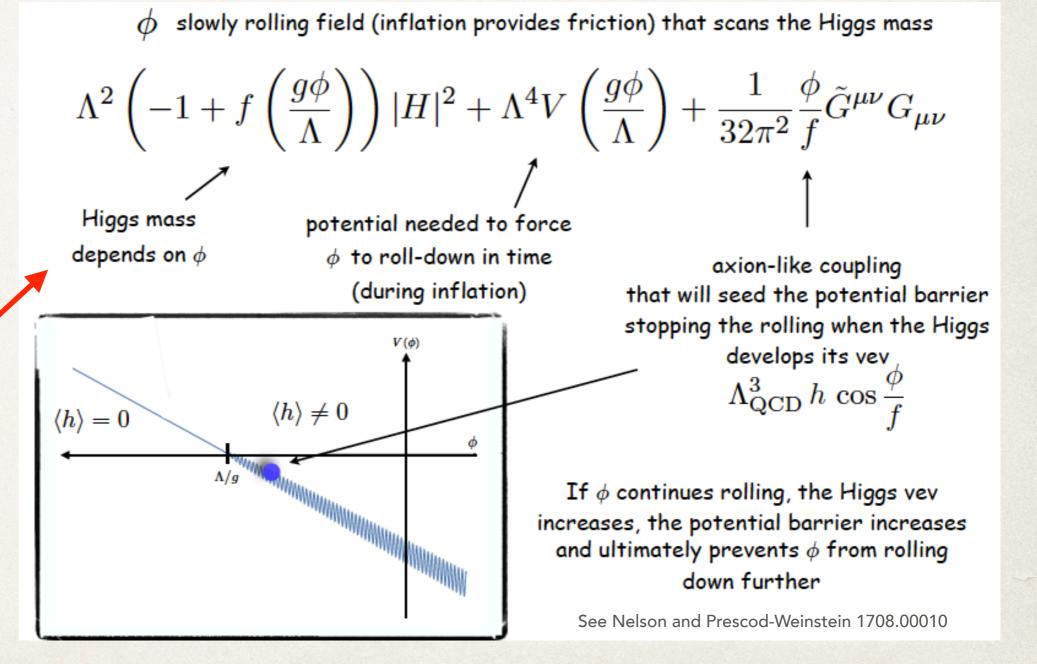
Disclaimer: not an expert, hoping for corrections and comments!

Models with light mediators

* Vector Portal $\longrightarrow \mathcal{L} \supset \epsilon V_{\mu} J_{SM}^{\mu}$ * Higgs Portal $\longrightarrow \mathcal{L} \supset \lambda S^{2}(H^{\dagger}H)$ * Axions/ALPS $\longrightarrow \mathcal{L} \supset \frac{\partial_{\mu} P}{f_{A}} \bar{f} \gamma^{\mu} \gamma^{5} f$ $\mathcal{L} \supset \frac{g_{\gamma\gamma}}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} P$

Each of these can be mediators between the DM and the SM: can have significant interactions with the SM and be probed via collider experiments

8

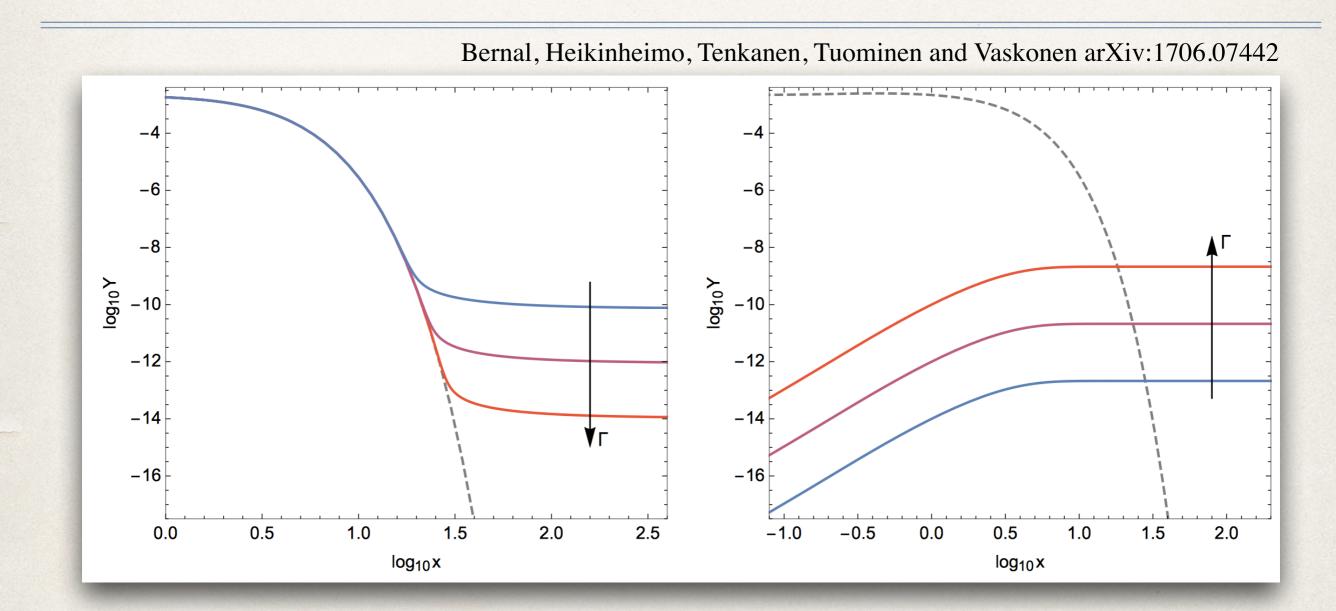

Motivation for light mediators

Strong CP
 problem (PQ
 axion)

 Hierarchy problem (Relaxion)

 Small-scale structures

probably more

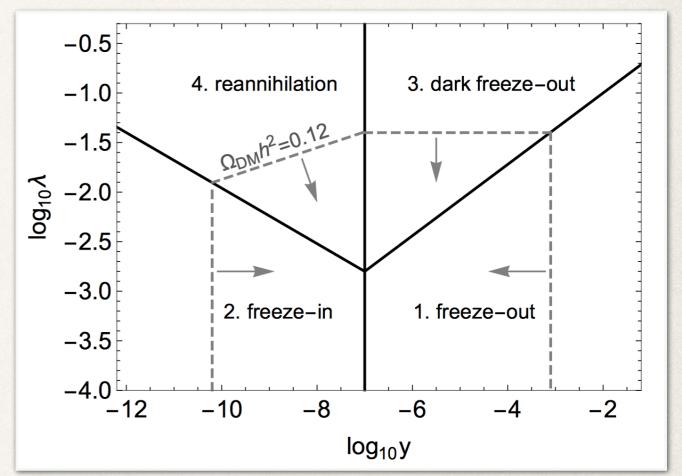


.....and as a gateway to the Dark sector!

Experimental signatures/constraints

- Dark matter relic density generation
- Cosmology / Astrophysics bounds: BBN, Horizontal branch stars, DM self interactions, SN1987A
- Electron and proton Beam dump experiments: SLAC E131, SLAC E137, CHARM, NuCal, NA62
- Production at Flavour experiments: FCNC K and B decays, upsilon decays, direct production

Freeze in and freeze out

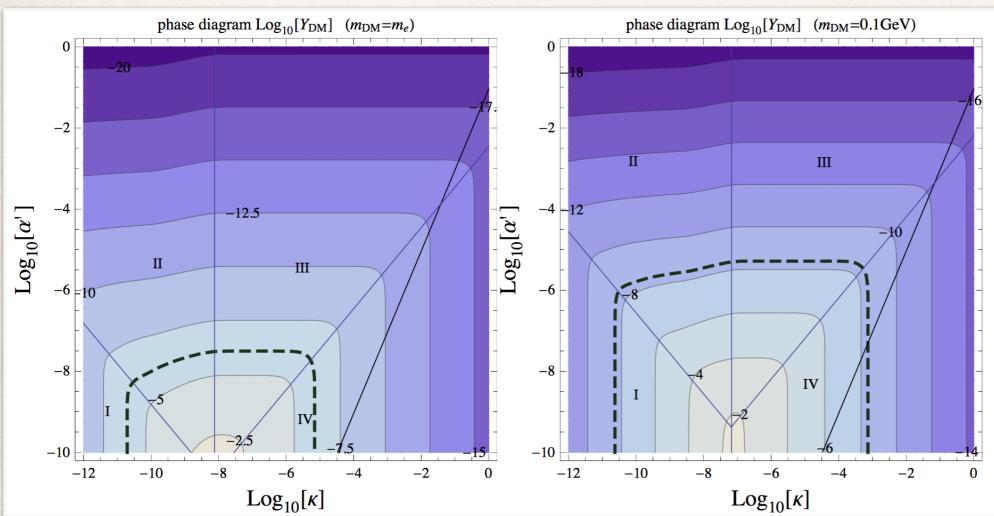


Three values of the rate Γ between the visible sector and DM particles χ , where arrows indicate the effect of increasing Γ . For freeze-out $x = m\chi/T$ For freeze-in, $x = m\sigma/T$ and for both $Y = n\chi/s$.

Non-standard DM generation

Chu, Hambye and Tytgat, arXiv:1112.0493 Bernal et al. arXiv:1706.07442

Dark freeze-out: DM not in thermal eq. with SM but with dark sector, generated from as in freeze in. DM annihilates into dark sector, different temperatures.


 Reannihilation: DS in eq. within itself but dark freezeout would occur before yield from SM has ended. DM freezes out only when production has ended.

Dark Photon couplings

◆ Freeze-in: €² ~ 10⁻¹⁷ to 10⁻¹⁵

* **Reannihilation:** $\epsilon^2 \sim 10^{-15}$ to 10^{-9}

* **Dark freeze-out:** ε² ~ 10-9 to 10-5

 $Log_{10} \alpha'$

10-1> -2 6-01 10-15 -4 10-17 70-5 10-13 -6 70-; -8 ϵ^2 -10-8 -6 -12 -10 -4 -2 Log₁₀ K

> where K represents the strength of the interaction between the SM and the dark sector

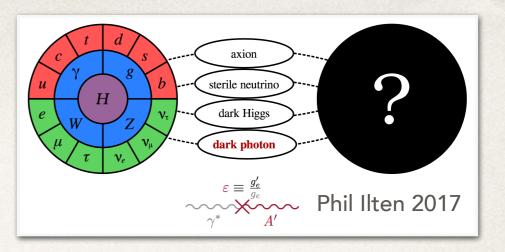
$$\kappa = c_W \frac{\epsilon}{1 - \epsilon^2} \sqrt{\frac{\alpha'}{\alpha}}$$

Cosmological motivation

Hints for self interactions from small-scale structures:

Unclear if N-body simulations can reproduce small-scale structures where structure formation is strongly non-linear.

Problem	N-body	Observation		
Core-cusp	Mass density profile for CDM halos increases toward the center: $\rho \propto r^{-1}$	Galaxy rotation curves prefer a constant "cored" density profile $\rho \propto r^0$		
Diversity	Density profiles of galaxy halos quite uniform for given mass	Disk galaxies with same max circular velocity have large scatter, i.e. core densities can vary by factor O(10)		
Missing satellites	In Milky-way predict O(100–1000) subhalos large enough to host galaxies	Only O(10) dwarf spheroidal galaxies discovered		
Too-big-to-fail	Brightest galaxies at centre of largest sub-halos.	Central region of largest sub-halos too dense to be consistent with stellar formation of brightest dwarf spheroidals		

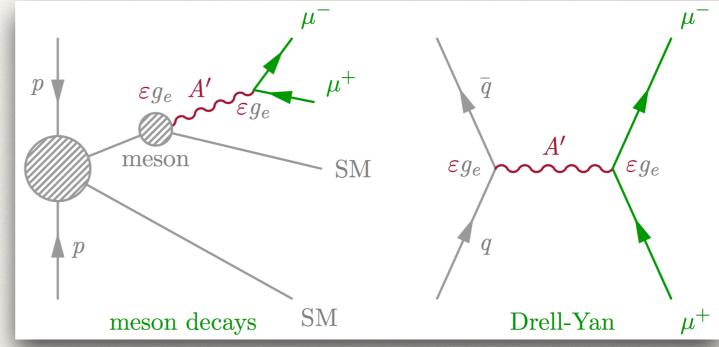

From review on self-interactions and small scale structure by Tulin and Yu, arXiv:1705.02358

Cosmology and astro constraints

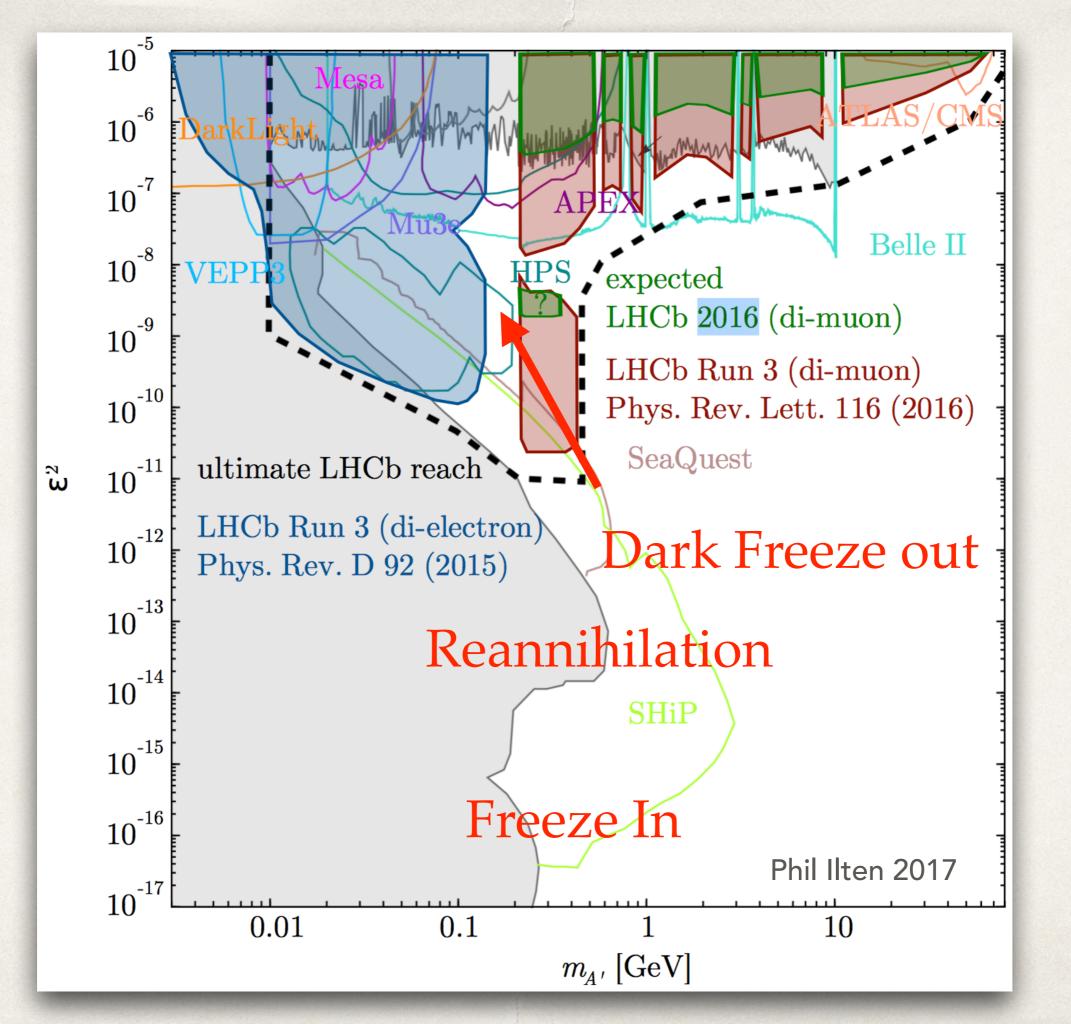
Cadamuro and Redondo, arXiv:1110.2895

- SN1987A: Weakly coupled particles with masses up to 100 MeV could provide an energy loss mechanism similar to neutrinos before the explosion. Neutrino observation from SN1987A results in bound on other particles cooling the SN.
- Horizontal branch stars: Energy-loss mechanism here too, effecting evolution of stars, constraint from star counts in the colour-magnitude diagrams of globular clusters
- BBN bounds: mediators must decay sufficiently quickly before BBN to avoid changes to the expansion rate/entropy density/ destruction of certain elements. Irrelevant if decay time< 1 s.

Dark Sector@LHCb



See Carlos Vazquez Sierra's talk


Ilten, (Soreq), Thaler, Williams and Xue, arXiv:1603.08926, arXiv:1509.06765

Dark photon searches proposed using inclusive dimuon production and D*0 $\rightarrow D^0 e+e^-$

Prompt and displaced searches to be performed simultaneously, covering large region of parameter space with the full Run 3 LHCb dataset.

D*0 search (requires Run 3 triggers) will cover dark photon masses from the $2m_e$ to 1.9 GeV, and inclusive di-muon (possible with Run 2) above $2m_{\mu}$.

Production and decay modes at B factories

Three fundamentally different ways to produce light mediators (M):

- * Non-resonant annihilation of an electron-positron pair: $e^+e^- \rightarrow M + X$
- * Resonant production from tree-level decay, e.g. $e^+e^- \rightarrow \Upsilon(nS) \rightarrow M+X$.
- ✤ Resonant production from loop-level rare decay, e.g. $e^+e^- \rightarrow B + X \rightarrow K + M + X$.

Once produced, the mediator can have four different types of decays:

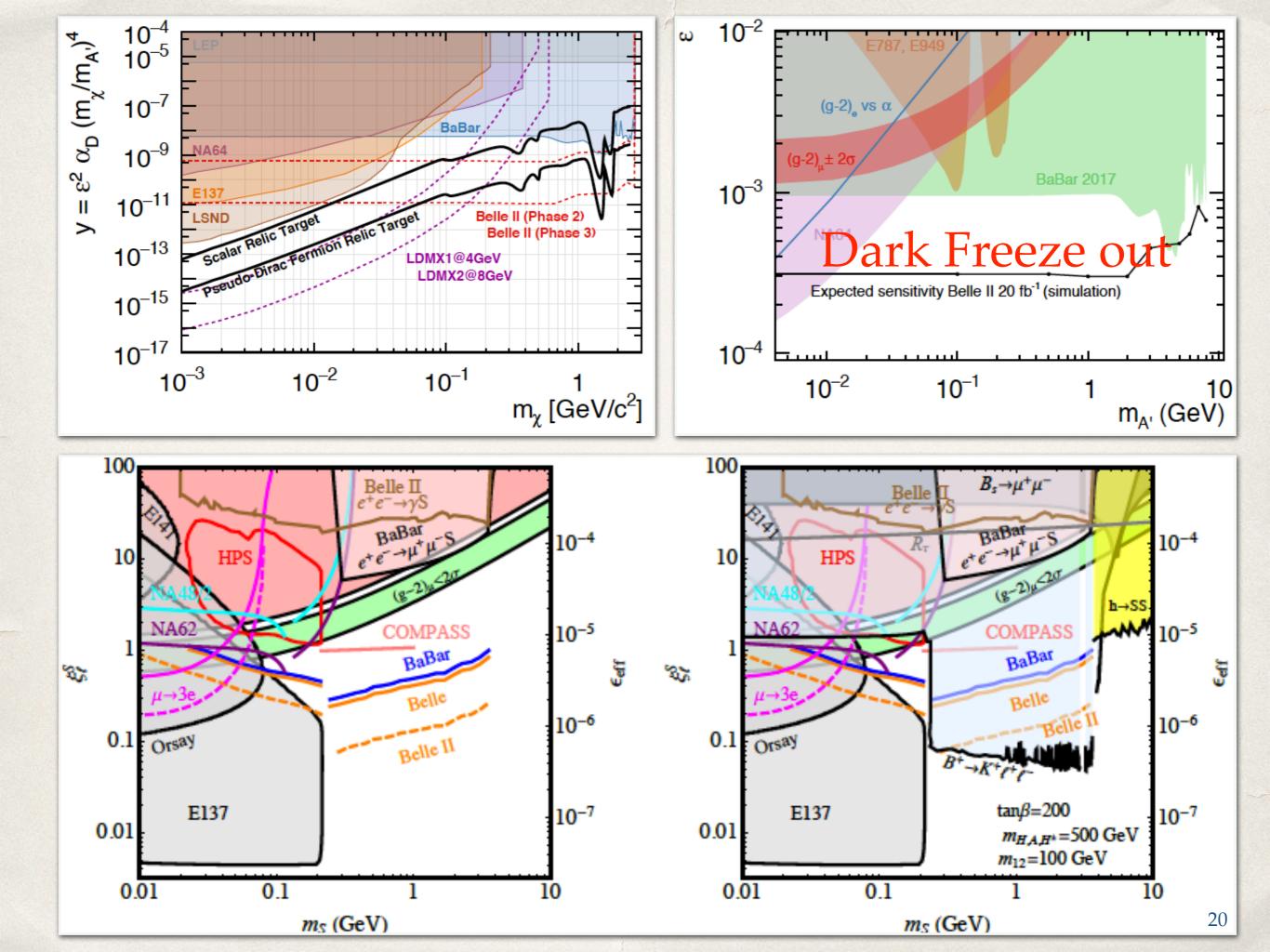
 $\chi \chi$ lil2 gig $\gamma \gamma$

Promising search channels at Belle II

For more information see Belle II physics book.

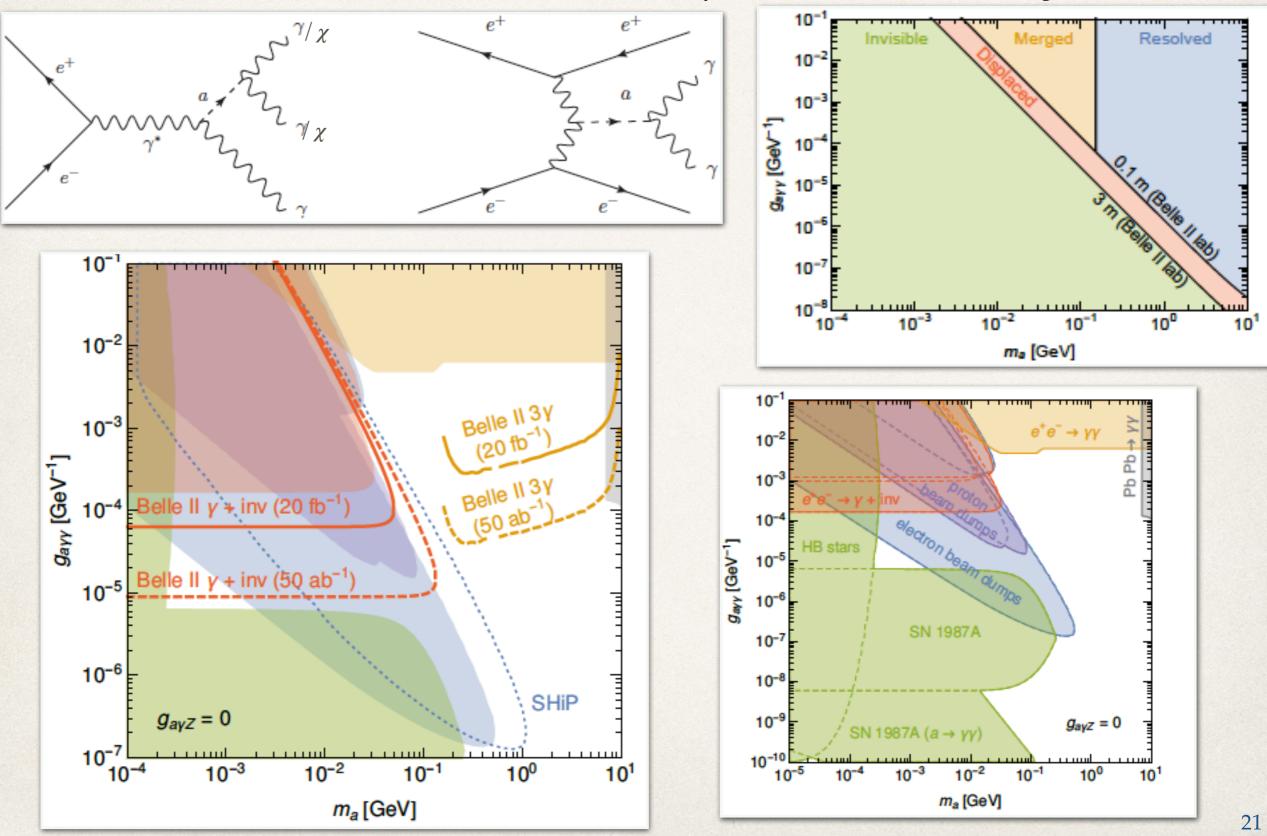
* $e^+e^- \rightarrow M + X$:

- ★ Relies on e-coupling, best for vector, if pseudoscalar via alpsstrahlung e⁺e⁻→ γ^{*}→γM, or photon fusion e⁺e⁻→M+e⁺e⁻→γγ+e⁺e⁻). or e⁺e⁻→ γ^{*}→ττ→M+ττ,
- If invisible, γ needed for triggering (e⁺e⁻→M + γ), if leptonic, γ can also help enhance trigger acceptance (Displaced vertices also possible.)



- ★ For spin-0 or axial-vector mediators $\Upsilon(1S) \rightarrow M\gamma$, (bump in photon spectrum). M→ℓℓ, leptonic invariant mass shows peak.
- * $\tau\tau$, gg, hh final states also possible. Triggering on $\pi\pi$ allows M \rightarrow inv, even if γ off shell.

* $e^+e^- \rightarrow B + X \rightarrow K + M + X$:


- ★ M→inv (like B to Kvv but diff. K distribution), γγ (good for pseudo-scalar with mass near $2m_{\mu}$) or $\mu\mu$ (strongest limit for spin-0).
- Displaced vertices can also be identified.

See Laura Zani's talk

ALPs searches at Belle II

Dolan, Ferber, Hearty, Kahlhoefer and Schmidt-Hoberg arXiv:1709.00009

Conclusions

 LHC and worldwide particle physics experimental programme playing major role in how we look at physics beyond the SM

สาสาราชาธาธาธ

- Lack of signs of BSM@LHC resulting in new ideas for potential solutions to hierarchy problem, e.g. neutral naturalness, relaxions, LHC(b) and Belle results are putting flavour in the spotlight with the B anomalies, attracting attention to leptoquark and Z' models
- Lot of model building activity in the light sector, trying to find innovative ways of solving the DM, strong CP, neutrino mass and hierarchy problems.
- Prospects of Belle II and LHCb look promising but need continuous thinking of new channels to further probe this sector experimentally!
 Creativity of theorists moulded by experimental revelations