

LHCOPN LHCONE Meeting Fermi National Accelerator laboratory Oct 30- 31, 2018 6-7 March 2018 • Gerben van Malenstein Presented By Joe Mambrettti

LHCONE L3VPN: A global infrastructure for High Energy Physics data analysis (LHC, Belle II, Pierre Auger Observatory, NOvA, XENON)

AutoGOLE: overview

- AutoGOLE fabric delivers dynamic layer 2 network services between Open Exchanges and networks, designed as a multi-domain system
 - Based on Network Service Interface (NSI) Connection Service
 - Hub and spoke architecture
 - 29 Network Service Agents (6 aggregators, 23 uPA) advertising 30 networks worldwide
 - Using DDS service for NSA discovery and document propagation between aggegrators
 - Advanced capabilities
 - Experimenting with new path finding and signaling algorithms
 - Additional network modeling for optimizations
 - Reducing old-school multi-domain human provisioning lead times
 - Introduction of multi-domain possibilities for monitoring, troubleshooting and provisioning
 - AutoGOLE Dashboard (former prototype)
 - MEICAN Pilot

OnDemand services, multi-domain

Why MEICAN for the AutoGOLE?

- Looking for 1 provisioning tool for NOCs and users, a front-end for the AutoGOLE
- Comparison of multi-domain provisioning systems after GLIF AutoGOLE meeting in May 2016
- MEICAN
 - Interface offers support for creation, modification and deletion of multi-domain services
 - Interface is intuitive, easy access to world-wide (true multi-domain) provisioning of service
 - Offers features such as user roles, authorization and workflows
 - Monitoring of services becomes possible
 - Debugging for NOCs possible
 - Supporting the Network Service Interface

MEICAN: moving towards a production-grade multi-domain network service provisioning tool

MEICAN Topology

MEICAN Circuit reservation

MEICAN Circuit reservation – path info

III≘ICAN		≡						Д ^а н	oout Help	🜔 John Hess	Sign out
🖷 Dashboard		Circuit #1	.82 Home>Circuits								
	<	₽	STATUS Active		RESERVATION Provisioned		AUTHORIZATION Approved	1	φ	UPDATED AT 02/21/2017 14:45	
🖮 Monitoring	<									by Provider	_
O Topologies	<	Path				Ма	sp Info	Details		Refresh Edit	Cancel
🗇 Tests	<	Order	URN				VLAN	Circuit ID	19761174-3f7	5-4846-aca0-c8ff27a8	2144
答 Lisers	<	0	um:ogf:network:lsanca.pacificwave.net:2016:topology:imc-10g02.lsanca				1785	Name	lsanca - netherlight pS – yet again		
	-	1	um:ogf:network:lsanca.pacific		1785	Bandwidth	100 Mbps				
C [*] External Access	<	2	um:ogf:network:snvaca.pacificwave.net:2016:topology:snvl2-pw-sw-1_e7_2				1785	Start 02/21/2017 14:45			
		3	um:ogf:network:snvaca.pacificwave.net:2016.topology:esnet-sunnyvale				1785	End	02/22/2017 00:00		
		4	urr:ogf:network:es.net:2013::sunn-cr5:8_1_1:pacwave				1785	Version	1		
		5	urrcogfinetworkces.net:2013:amst-cr5:3_1_1:+ urrcogfinetworkcnetherlight.net:2013:production7:esnet-1				1002	Туре	NSI RNP Aggregator		
		6					1002	Provider			
		7	um:ogf:network:netherlight.net:2013:production7:jperf1-3				1785				
		Traffic m	onitoring			Last hou	e Refresh	History			

MEICAN experiences and results so far

- RNP provides active participation and support to the AutoGOLE project
- International circuits for research activities have been created
- NOC engineers involved

https://wiki.rnp.br/display/secipo/AutoGOLE+MEICAN+Pilot

Timeline 2016-2017 MEICAN pilot

Phase 1

Form a coalition of AutoGOLE partners that want to join. These are: PacificWave, SINET, StarLight, RNP, NetherLight/SURFnet.

AutoGOLE is open to others joining this effort.

Phase 2

Create and test an implementation with MEICAN.

Engage NOC engineers and put them into the Playground first, then production system, get their feedback. Phase 3 Try-outs of MEICAN by production NOCs.

Phase 4

Facilitate collaborations and research projects.

Show the difference between regular IP connectivity and ondemand circuits.

AutoGOLE workplan 2018

1. More peerings & expansion (data plane, world-wide coverage)

- Adding 100G DTN hardware, integrating DTNs in the WAN
- Onboarding CESNET, GTS, MOXY

2. Recurring process to check link state

- MEICAN can also setup connections automatically

3. Growing MEICAN setup (control plane)

- Collaboration with the GNA TF provisioning subgroup (next slide)
- Assigning a responsible operations engineer per site

Future R&E Network Workshop • Berkeley, 9 January 2018

Global Exchange Point Working Group Charter

• The core goals of this group is to make Global Exchange Points more useable by defining how to build on GNA 1.0. In particular the group will aim to achieve a very useable Global Exchange Point that includes provisioning interfaces, measurement interfaces, and reporting that will help <u>make interactions with the open exchange</u> <u>user-friendly</u>.

global network architecture

GNA: Automating Global Exchange Point provisioning

"This work items recognises that Global Exchange Points are not operated by a single network provider, but are operated by separate network providers. This means that commercially available control planes for service provisioning are not suitable for provider-to-provider service instantiation. This task will investigate recent work to solve this problem and propose a solution that best suits the needs of the GNA community."

Data Transfer Nodes

• International setup based on LHCOPN-LHCONE discussion at CERN 10 Jan '17

- Research by University of Amsterdam in 2017
 - Demo on Aircraft Maintenance at SC'17
 - -http://sc.delaat.net/sc17/posters/Poster-use-case-aircraft-maintenance-SC.pdf

Data Transfer Nodes

Figure 1: The flow of data in the Accelerated Data Transfer work flow.

Research by UvA, funded by SURFnet

Figure 2: The flow of data in the Data Access Point work flow.

International Connectivity for Data Transfer Nodes

Version 6, 26 January 2018, Gerben van Malenstein, SURFnet

Data Transfer Nodes

Ref Earlier Presentation

Ref: AutoGOLE MEICAN NSI Demonstrations @ SC18

- •SC18 Dallas Texas November 11-16, 2018
- •ACM International Conference For High Performance Computing, Networks, Storage, and Analytics

•Questions??

