
Designing and Implementing
for Scale, Distribution & Async

Dr. Jörn Friedrich Dreyer

Solutions Architect

butonic @ twitter, github, ...

2

Agenda

● Design considerations

– Vertical and horizontal scalability

– Fallacies of distributed computing

– Asynchronicity

● Our implementation focus

– PHP or GO?

– ownCloud infinite scale

– Controlled API evolution with protobuf and gRPC

– Key takeaway: add LongProcessingResponse to cs3 apis!

It’s all theory ...

4

Scalability

source: https://stackoverflow.com/a/11715598

https://stackoverflow.com/a/11715598

5

Fallacies of distributed computing

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

5. Topology doesn't change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous.

source: https://www.datawire.io/using-fallacies-of-distributed-computing-to-build-resilient-microservices/

https://www.datawire.io/using-fallacies-of-distributed-computing-to-build-resilient-microservices/

6

Asynchronicity

● Async IO

– your current thread is not blocked until the remote service has responded

– mechanisms for working with non-blocking IO are callbacks, futures, or streams

● Asynchronous protocols

– HTTP is a synchronous protocol: the client issues a request and waits for a response

– message passing: as a sender, you usually don’t wait for a response

● Asynchronous service integration

– Do not communicate with other services during your own service’s request/response cycle.

● Self-Contained Systems (SCS)

– Whenever feasible, “integration” between two self-contained systems should happen in the UI

source: https://www.innoq.com/de/blog/why-restful-communication-between-microservices-can-be-perfectly-fine/

https://www.innoq.com/de/blog/why-restful-communication-between-microservices-can-be-perfectly-fine/

Making it real ...

8

PHP or GO?

● PHP

– Interpreted (well cached)

– Request driven

– OS managed threads

– Yield allows some thread concurrency

– fibers are being worked on as ext-async

– Blocking IO

● All async efforts (ReactPHP, amp, or
swoole) reimplement mysql and redis
access

– Ecosystem built with blocking IO in mind

● golang

– Compiled language (short build times)

– Long running services

– Userspace managed coroutines

– Async IO is an integral part

● Storage IO is blocking, though

– The community seems appalled with non
thread safe libraries like libsmbclient

● golang is more mature for async io

https://wiki.php.net/rfc/fiber
https://github.com/concurrent-php/ext-async
http://reactphp.org/
http://amphp.org/
https://www.swoole.co.uk/

9

ownCloud infinite scale

10

Controlled API evolution with protobuf and gRPC

● protobuf is an IDL

● Client and server stubs are generated

– C++, Java, Python, Go, Ruby, Objective-C, C#,
JavaScript

– third-party implementations for C, Perl, PHP, R,
Scala, Swift and Julia

– Binary protocol & HTTP/2

● Even browser based clients can use it

● Supports an evolving schema!

● CS3 APIs feature request #1:
allow async requests by adding a
LongRunningResponse

syntax = "proto3";

message SearchRequest {
 string query = 1;
 int32 page_number = 2;
 int32 result_per_page = 3;
}

service SearchService {
 rpc Search (SearchRequest)
 returns (SearchResponse);
}

Thank You

Rathsbergstr. 17, 90411 Nürnberg

+49 911 14888690

facebook.com/ownCloud

@ownCloud

owncloud.com

12

Pydio Cells

13

Dropbox Magic Pocket

14

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

