
Advanced geo-spatial data
analysis with Jupyter

Davide DE MARCHI, Armin BURGER, Paul HASENOHR, Pierre SOILLE

European Commission, Joint Research Centre
Directorate I Competences, Unit I.3 Text and Data Mining

Big Data Analytics Project

Joint Research Centre (JRC)

Contacts: armin.burger@ec.europa.eu
pierre.soille@ec.europa.eu

CS3 2019 – Cloud Storage
Synchronization and Sharing Services

29/01/2019, Rome

©
X

X
X

© artjazz

3000 staff
Almost 75% are
scientists
and researchers.

DG Joint

Research

Centre

JEODPP: JRC Earth Observation Data
and Processing Platform

Versatile platform bringing the users to the data and
allowing for:

• Running large scale batch processing of existing
scientific workflows thanks to lightweight
virtualisation based on Docker

• Remote desktop capability for fast prototyping in
legacy environments

• Interactive data visualization and analysis with
Jupyter notebooks

Provides a collaborative environment serving the needs
of users with very different requirements and skills

See details in FGCS, 2018,
doi:10.1016/j.future.2017.11.007

http://dx.doi.org/10.2760/383579

Conceptual representation

Current status of JEODPP platform

Based on:

• commodity hardware

• open-source software stack

Storage:

• CERN EOS distributed file system

• Currently 9 PB net capacity

Processing servers:

• 1,500 cores over 35 nodes

• 4 servers equipped with multi-GPUs and dedicated to
Machine Learning processing with TensorFlow, Keras, …

Main software stack

Source: Soille et al., Future Generation of
Computer Systems, 2017 DOI:
1010.1016/j.future.2017.11.007 (in press)

http://dx.doi10.1016/j.future.2017.11.007

JEODPP batch processing: JEO-batch

• Running large-scale data processing tasks in a
cluster environment

• Docker containers for flexible management of
processing environments

• Custom builds for different requirements

• Facilitates upgrades of processing environment

• Run through a workload manager:

HTCondor scheduler

• Extensive use for large scale processing/analysis

• “Optimal”: 100% cloud free

• The selection was made from

2,128,556 optical remote

sensing images.

• Each image was assigned to

one core.

• No dependencies between jobs

Optimizing Sentinel-2 image selection
in a Big Data Context - Running in Docker universe

Global S2 Quick look Mosaic doi:10.1080/20964471.2017.1407489

https://doi.org/10.1080/20964471.2017.1407489

• 50 years simulation over the

Mediterranean sea.

Mediterranean Sea simulation 1958-2013
Running in Parallel universe + Docker Swarm

Hydrodynamic and ecosystem simulations
http://mcc.jrc.ec.europa.eu

• CERN EOS is used for

the main storage, in

cooperation with

NETAPP NFS and local

scratch

• MPI application

• MESOS is used

From a Jupyter notebook, the Dask python package (https://dask.org)

provides an interface to a Kubernetes cluster with Dask workers
so that any operation on a NumPy array is transparently and
automatically executed over multiple nodes and their CPUs.

Advantages of using Dask:
Designed to parallelize the Python ecosystem

• Flexible parallel computing paradigm;

• Parallelize existing Python code in transparent

way for the users (no need to adapt the code)

• Co-developed with Pandas/SKLearn/Jupyter teams

• Ideal for analysis of large raster files

Scales
• Scales from multicore to 1,000-node clusters

• Resilience, responsive, and real-time

Use Cases
- DEM analysis for

Erosion Index over
all Europe

- Metereological raster
analysis for forecasting
purposes

Dask on Kubernetes

Dask on Kubernetes/JEODPP

JEODPP
access

numpy

• Web interface to visualize and analyze big geospatial
data

• Allows fast search and display of complex dataset

• Creates an agile test environment for raster and vector
processing algorithms thanks to the immediate display
of the output results

• Available for geospatial expert with some
programming capabilities

• Allows easy creation of GUI applications for non
programmers (ipywidgets, ipyleaflet, bqplot, qgrid)

• Extension in near future to app-mode using Voila

JEODPP Interactive visualisation
and analysis: JEO-lab

Deferred processing

• No data is pre-calculated, similarly to Google Earth
Engine platform

• Processing steps, their input parameters and their
combinations in processing chains are defined by
the user in the python client environment and saved
in JSON format

• Processing chains are executed server side in a highly
parallel infrastructure by an image processing C++
library having a direct access to data: TileEngine

• Results are sent via HTTPS to the ipyleaflet client

Deferred processing in action

coll = inter.ImageCollection(collections.Sentinel2)

coll.filterOnGeoName("Ispra")

coll.filterOnDay(2017,10,14)

p = coll.process().band("B04").maskLT(800).colorCustom(["red","yellow","green"])

map.addLayer(p)

Python code written
in a notebook cell

Deferred processing in action

Json =
{"Collection":2,"ColorInterpolate":true,"ColorMap":null,"ColorMapApply":false,"ColorSchemeCustom":true,

"ColorSchemeName":"custom","CountScaling":1,"CustomColors":[255,65535,32768],"IsCount":false,

"IsND":false,"IsRGB":false,"OptimizeStats":false,

"R":"B04","Ravgmean":1028.0899999999999,"Ravgsdev":767.27999999999997,"Rmax":2000,"Rmin":600,

"SubCollection":0,"_coll":2,"attribution":"","combine":null,"databand":0,"interpolate":0,

"oids":[704778,1341473],"opacity":255,"quicklooks":false,"rm":0,

"steps":[{"Alg":"Mask","UseValues":true,"isvalid":true,"maxvalue":800,"minvalue":0}]}

Key = f21d1dc1d2b78b4a5bb1b073433146ff

Python kernel interprets the processing chain and
converts it to a JSON string and an unique key that

are stored in a REDIS key/value store

Deferred processing in action

A new Tile layer, identified by
the processing chain key, is
added to the ipyleaflet map

on the web page

ipyleaflet asks the Tile Engine to
produce the tiles for the layer,

passing the processing chain key at
each request

HTTPS requests
for each tile

Tile images
sent back

The Tile Engine is
a C++ service

running in a HPC
cluster

An example with DEM hillshade display

One step further: Python code injected
server-side

Need to increase user flexibility

Need to use available python libraries

Why not allow to inject custom python code to the server-side
processing chain Tile Engine running in the HPC?

Function definition and function call are converted to
strings using python inspect module (getsource and
getcallargs functions)

A special processing step, called execute, was implemented

For security reasons the list of available libraries is limited but
customizable on-demand

Python code injected server-side

For each tile requested by the
ipyleaflet map, the C++ server code
creates a python interpreter instance
(python embedding) and:

• executes in it the python function
definition

• creates a multi-dimensional
Numpy array and fills it with the
results obtained from the previous
steps of the precession chain

• executes the python function call

• Reads the result returned by the
user function and passes it to the
next step of the chain

def maskpy(img, n):
return img[img<=n] = 0

An example: stubble burning mapping
Courtesy: JRC Directorate D Sustainable Resources, D.5 Food Security

• Deliberate setting fire of the straw stubble that
remains after wheat and other grains have been
harvested.

• The practice was widespread until the 1990s, when
governments increasingly restricted its use

• Many risks:

• Pollution from smoke

• Risk of fires spreading

out of control

• …

Detection of stubble burning from satellite images
using python code injected server-side

def stubble(img, v4, v6, v8, v11min, v11max):

b4,b6,b8,b11 = img[0],img[1],img[2],img[3]

res = numpy.ones_like(b4)

res[b4>=v4] = 0

res[b6>=v6] = 0

res[b8>=v8] = 0

res[numpy.logical_or(b11<=v11min,

b11>=v11max)] = 0

return res

p = coll.processMulti(["B04","B06","B08","B11"])

.execute(stubble,1000,1200,1200,500,1600)

.band(0).scale(0,1).colorCustom(["Lime"])

Function definiton that implements the stubble
burning algorithm:

Multi-band processing chain containing the python function call:

B04 < 1000 AND
B06 < 1200 AND
B08 < 1200 AND
B11 > 500 AND
B11 < 1600

Stubble burning
detection for
Sentinel2:

Detection of stubble burning from satellite images
using python code injected server-side

Takeaway message

• Multi-petabyte scale platform

• Versatile environment for Big data visualization,
analysis and processing

• With the server-side injection of python code,
deferred processing for interactive visualization is
even more flexible and open

• Batch and interactive processing are available and
will be even more linked in the near future (JEO-lab
as a fast prototyping environment to test and create
complex batch processing jobs)

Thank you for your attention!

EO&SS@BigData
pilot project

Unit I.3 Text and Data Mining Unit
Directorate I Competences

GEO-WEEK, Washington DC, Oct 2017

https://doi.org/10.1016/j.future.2017.11.007

Publication list:
https://cidportal.jrc.ec.europa.eu/home/publications

https://doi.org/10.1016/j.future.2017.11.007
https://doi.org/10.1016/j.future.2017.11.007
https://doi.org/10.1016/j.future.2017.11.007
https://cidportal.jrc.ec.europa.eu/home/publications

