Joint Research Centre (JRC)

* K %
* *
* *
* *

* e Kk

European
Commission

Advanced geo-spatial data
analysis with Jupyter

Davide DE MARCHI, Armin BURGER, Paul HASENOHR, Pierre SOILLE

European Commission, Joint Research Centre
Directorate I Competences, Unit 1.3 Text and Data Mining
Big Data Analytics Project

Contacts: armin.burger@ec.europa.eu Joint CS3 2019 - Cloud Storage
pierre.soille@ec.europa.eu Research Synchronization and Sharing Services

Centre
29/01/2019, Rome

DG Joint
Research
Centre

-
' = -
' =
. -
. -

i
&

SHH

6

Locations
5 Member
States

Established in

1957 4@

& Petten . The Netherlands

3000 staff

Almost 75% are
scientists
and researchers.

N=

>1000

Publications
per year

10

Directorates

Brussels - Belgium

Geel - Belgium

Karlsruhe - Germany

42

Large scale
facilities

>
A N a-
w o

h) i >
— !

Seville - spain Ispra- italy

Versatile platform bringing the users to the data and
allowing for:

« Running large scale batch processing of existing
scientific workflows thanks to lightweight
virtualisation based on Docker

- Remote desktop capability for fast prototyping in
legacy environments

- Interactive data visualization and analysis with
Jupyter notebooks

Provides a collaborative environment serving the needs
of users with very different requirements and skills

Join

See details in FGCS, 2018,
doi:10.1016/j.future.2017.11.007

European |
Commission

http://dx.doi.org/10.2760/383579

Interactive data visualization
and analysis with Jupyter

Remote desktop capability
for fast prototyping with
scientific software

existing scientific workflows on

Large scale batch processing of 1
lightweight Docker virtualization

Storage and processing infrastructure _

based on commodity hardware and o
CERN EOS distributed file system

Joint
Research
Europe

Comm

Centre

Based on:

« commodity hardware
« open-source software stack

Storage:
e CERN EOS distributed file system
e Currently 9 PB net capacity

S
EE/RW ||m1'|

Processing servers: >
e 1,500 cores over 35 nodes

o 4 servers equipped with multi-GPUs and dedicated to
Machine Learning processing with TensorFlow, Keras, ...

Joint

Research

Centre - European
Commission

Table 1: Main software components deployed on the JEODPP platform with their version.

Software component Description Version
Host Operating System CentOS 7.3
Distributed File System CERN EOS 4.1.26
Containerization Docker 17.05.0-ce
Container Operating System Debian 8.x
Task scheduler HTCondor 8.7.1
Remote Desktop Guacamole 0.9
Interactive visualization Jupyter notebook 4.1.0
Python 2.7
[Pyleaflet 0.4.0al
GDAL 2.2.1
Mapnik 3.0.12

JEODPP interactive library 0.1

Source: Soille et al., Future Generation of Joint
Computer Systems, 2017 DOI:

Research ‘
Centre “ European
1010.1016/j.future.2017.11.007 (in press)

Commission

http://dx.doi10.1016/j.future.2017.11.007

JEODPP

Interactive Infrastructure

processing

Generic access

FUSE
XRootD

Batch processing

NAS/Netapp

European
Commission

Running large-scale data processing tasks in a
cluster environment

Docker containers for flexible management of
processing environments

e Custom builds for different requirements

e Facilitates upgrades of processing environment

Run through a workload manager: = " «___F[[Con(M;

HTCondor scheduler

Extensive use for large scale processing/analysis

Joint

Research

Centre “ European |
Commission

“Optimal”: 100% cloud free

The selection was made from

2,128,556 optical remote
sensing images.

Each image was assigned to
one core.

2
-60
0 120 150 180

Global S2 Quick look Mosaic doi:10.1080/20964471.2017.1407489

No dependencies between jobs

Commission

https://doi.org/10.1080/20964471.2017.1407489

Hydrodynamic and ecosystem simulations
http://mcc.jrc.ec.europa.eu

50 years simulation over the

Mediterranean sea.

CERN EOS is used for

the main storage, in

HTCondar
Master

. Docker Images
™ can be pulled

COOperation with Submit (7
NETAPP NFS and local

scratch .
iﬂ»{ Guacamole
Terminal
User \.

Users can query/edit
/pause/delete his jobs

= EEE}S]
/ — -
" Worker node EEEEE]‘E]_
/scratch
- - Jobhasa

T
A

il
-

/netapp

TCondor logfiles and

H H Executables and small large scratch
M PI d Ilcatlon input files can be read small files can be
p p ﬁ%m Netapp or EOS written to Netapp or area :::; local

i Data and large input

MESOS IS used ﬂlesmustbgrear:j
directly from EQS Large output files
should be moved to

EOS atthe end

From a Jupyter notebook, the Dask python package (https://dask.org)
provides an interface to a Kubernetes cluster with Dask workers

so that any operation on a NumPy array is transparently and
automatically executed over multiple nodes and their CPUs.

Advantages of using Dask: Use Cases
Designed to parallelize the Python ecosystem _ DEM analysis for
e Flexible parallel computing paradigm; Erosion Index over
e Parallelize existing Python code in transparent all Europe
way for the users (no need to adapt the code) - Metereological raster
e Co-developed with Pandas/SKLearn/Jupyter teams analysis for forecasting

e Ideal for analysis of large raster files purposes

Scales
e Scales from multicore to 1,000-node clusters
e Resilience, responsive, and real-time

Joint
Research
Centre European

Commission

EOS Storage

Kubernetes SubCluster
10 Nodes (more than 400 cpus)

Research
Centre

JEODPP,

= JupyterLab x

EX Launcher

Notebook

).

jupyter
4

European
Commission

Web interface to visualize and analyze big geospatial
data

Allows fast search and display of complex dataset

Creates an agile test environment for raster and vector
processing algorithms thanks to the immediate display

of the output results o amm®

Available for geospatial expert with some Jupyter
programming capabilities

Allows easy creation of GUI applications for non @
programmers (ipywidgets, ipyleaflet, bgplot, qgrid)

Extension in near future to app-mode using Voila

European
Commission

No data is pre-calculated, similarly to Google Earth
Engine platform

Processing steps, their input parameters and their
combinations in processing chains are defined by
the user in the python client environment and saved
in JSON format

Processing chains are executed server side in a highly
parallel infrastructure by an image processing C++
library having a direct access to data: TileEngine

Results are sent via HTTPS to the ipyleaflet client

European |
Commission

Python code written
in @ notebook cell

In []:

Jupyter web interface

coll = inter.ImageCollection(collections.Sentinel?2)

coll.filterOnGeoName ("Ispra®)
coll.filterOnDay (2017,10,14)

p = coll.process () .band("B04") .

map.addLayer (p)

maskLT (800) .colorCustom(["red","yellow", "green"])

- - . .
,‘_,' ‘ 5 ’ "f P4 ’
s ~ / 57 4
o 7 e 7) §9
v/ - & oy & ’
Vb ’/[/ W N », ,/ P s it st sy Fu, A
/ f
£
7 & '/” 4

e
Python kernel interprets the processing chain and
converts it to a JSON string and an unique key that
are stored in a REDIS key/value store

Notebook docker & ‘ ' ” ’
/ o’

l Key = f21d1dc1d2b78b4a5bb1b073433146ff I

Json =
{"Collection":2,"ColorInterpolate":true, "ColorMap":null, "ColorMapApply":false,"ColorSchemeCustom":true,
"ColorSchemeName" :"custom", "CountScaling":1, "CustomColors":[255,65535,32768],"IsCount":false,
"IsND":false,"IsRGB":false,"OptimizeStats":false,
"R":"B04", "Ravgmean":1028.0899999999999, "Ravgsdev":767.27999999999997, "Rmax":2000, "Rmin":600,

"SubCollection":0," coll":2,"attribution":"","combine":null, "databand":0,"interpolate":0,
"oids":[704778,1341473],"opacity":255,"quicklooks":false,"rm":0,
"steps":[{"Alg":"Mask","UseValues":true,"isvalid":true, "maxvalue":800, "minvalue":0}]}
F
s y7
’ . .

’ -

Marlsrune o
ovens!

.......

LLLLL

sterreic

D :'..:.

rance Supni)
1 Navwwile.

Aguritoine

Barjaluks

A new Tile layer, identified by
the processing chain key, is
added to the ipyleaflet map

on the web page HTTPS requests
for each tile

Tile images
sent back

| RS - | | Interactive library
e ' JIPlib \.\.
ipyleaflet asks the Tile Engine to Mapnik GDALIOGR Q¥

produce the tiles for the layer,
passing the processing chain key at
each request

The Tile Engine is
a C++ service
running in a HPC
cluster

W Demo_07_DEMGuiipynb @
B + X 0O 0O » 8 ¢ Code ~ Python2 O

Sample GUI for easy DEM display in various modes

To simplify the display of DEM dataset an interactive GUI (graphical user interface) is available. It is based on standard ipyWidgets component and allows to easily select all the
awvailable visualization parameters for DEM display. Selecting “identify” checkbox adds a blue marker on the map: by moving the marker it's possible to identify a peint on the map and
display the elevation, aspect and slope of that point

In [5]: |map = Map()
map I

Poccus

Ml _)f o
W Rt :
HHHELT i
KazaxcTaH J.«f(h\ o
; Wi Mowron
@ il el {,__\\ ync 1
L ey i
/Qj_zk\:ekisign{./{ o el
rkmenistan .;f'é’:_{’_
Pl
; Lo e
¥
o f >

I In [J: dnter.gui(“DEM",map)

P ok, 7Y

Q . JEODPP

& TheJRC Big Data Platform

%uxﬂv

Need to increase user flexibility

Need to use available python libraries

Why not allow to inject custom python code to the server-side
processing chain Tile Engine running in the HPC?

Function definition and function call are converted to
strings using python inspect module (getsource and
getcallargs functions)

A special processing step, called execute, was implemented

For security reasons the list of available libraries is limited but
customizable on-demand

Joint

Research

Centre “ European |
Commission

Jupyter web interface

For each tile requested by the
ipyleaflet map, the C++ server code
creates a python interpreter instance .

(thhon embedding) and: / Web-service dockers
« executes in it the python function '

definition
P : Interactive library
 creates a multi-dimensional - JIPlib a2
Numpy array and fills it with the Mapnik GDAL/OGR \.

results obtained from the previous
steps of the precession chain

« executes the python function call

* Reads the result returned by the def maskpy(img, n):

user function and passes it to the return img[img<=n] =0
next step of the chain

« Deliberate setting fire of the straw stubble that
remains after wheat and other grains have been
harvested.

 The practice was widespread until the 1990s, when
governments increasingly restricted its use

 Many risks:
e Pollution from smoke

e Risk of fires spreading
out of control

Function definiton that implements the stubble

Stubble burning burning algorithm:
detection for

def stubble(img, v4, v6, v8, vllmin, vllmax):

Sentinel2: b4,b6,b8,bll = img[0],img[1],img[2],img[3]
B04 <1000 AND res = numpy.ones like (b4)

B06 < 1200 AND res[bd>=v4] = 0

B08 < 1200 AND res[b6>=v6] = 0

B11>500 AND res[b8>=v8] = 0

B11l <1600 res[numpy.logical or(bll<=vllmin,

bll>=vllmax)] = 0
return res

Multi-band processing chain containing the python function call:

p = coll.processMulti(["B04",6"B0O6","B08","B11"])
.execute (stubble, 1000,1200,1200,500,1600)
.band (0) .scale(0,1) .colorCustom(["Lime"])

Joint

Research

Centre - European
Commission

B Launcher x | [ExecuteStubbleBurning.ipyn @

B + X O [» ® C Makdownv Python2 @
Mapping stubble burning using numpy functions injected in the
server-side tile engine processing
Open a map and center 1

In [#1: map = Map(center=(44.16,23.15), zoom=18, side='StubbleBurning')

In [

In [

e = er"Q“‘
!
(@)

&
&

==

0. e

1t map.clear()

Create a Sentinel-2 collection

coll = Collection{collections.EarthObservation.Copernicus.Sentinel2.LevellC)
coll = coll.filterOnDay(2816,7,13)
coll = coll.filterOnRect(23.5, 44.2, 23.8, 44.86)

Define a server-side python function to calculate the stubble index

def stubble(v4=1008, v6=1200, vB=1200, v1l 1=560, vil 2=1600):
global img
img = numpy.ones_like(band®)
imglband@>v4] = @
imgibandl>ve] = @
imglband2>v8] = @
Amginumpy.logical_or{band3<v1l 1, band3>v1l 2)] = @

Test the python function for correctness in a simulated client-side
environment

testExecute{stubble,1p06,12008,1200,500,1600)

Create the processing chain

bands = ["B04","BO6","BO8","B11"]
pStubble = coll.processMulti(bands).execute(stubble,10008,1200,1200,500,1686) Y
.band(®) .=scale(®,1).colorCustom(["Lime"]}

Add layers to the map

EeDP:Pess() .bands (S2_LandWater)\
.scale(le86, 4318, 1027, 4242, 283, 21689)

wwmme, name='Sentinel-2z image'}

map.addLayer (pStubble, name='Stubble Burning areas')

% Buungajqams

Multi-petabyte scale platform

Versatile environment for Big data visualization,
analysis and processing

With the server-side injection of python code,
deferred processing for interactive visualization is
even more flexible and open

Batch and interactive processing are available and
will be even more linked in the near future (JEO-lab
as a fast prototyping environment to test and create
complex batch processing jobs)

European
Commission

..---...,

""‘ .JEODPP

‘Oﬂ TheJRC Big Data Platform

Future Generation Computer Systems

Volume 81, April 2018, Pages 30-40

ELSEVIER

o

A versatile data-intensive computing platform for information
retrieval from big geospatial data

P. Soille & &, A Burger, D. De Marchi, P. Kempeneers, D. Rodriguez, V. Syrris, V. Vasilev

B Show more
https://doi.org/10.1016/]. future 2017.11.007 Get rights and content
Open Access funded by Joint Research Centre

Under a Creative Commons license Open access

https://doi.org/10.1016/j.future.2017.11.007

Publication list:
https://cidportal.jrc.ec.europa.eu/home/publications

EO&SS@BigData
pilot project

Unit 1.3 Text and Data Mining Unit p— A
Directorate I Competences SEE Commisgion

https://doi.org/10.1016/j.future.2017.11.007
https://doi.org/10.1016/j.future.2017.11.007
https://doi.org/10.1016/j.future.2017.11.007
https://cidportal.jrc.ec.europa.eu/home/publications

