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JEODPP: JRC Earth Observation Data
and Processing Platform

Versatile platform bringing the users to the data and 
allowing for:

• Running large scale batch processing of existing 
scientific workflows thanks to lightweight 
virtualisation based on Docker

• Remote desktop capability for fast prototyping in 
legacy environments

• Interactive data visualization and analysis with 
Jupyter notebooks

Provides a collaborative environment serving the needs 
of users with very different requirements and skills

See details in FGCS, 2018, 
doi:10.1016/j.future.2017.11.007

http://dx.doi.org/10.2760/383579


Conceptual representation



Current status of JEODPP platform

Based on:

• commodity hardware 

• open-source software stack

Storage:

• CERN EOS distributed file system

• Currently 9 PB net capacity 

Processing servers:

• 1,500 cores over 35 nodes

• 4 servers equipped with multi-GPUs and dedicated to 
Machine Learning processing with TensorFlow, Keras, …



Main software stack

Source: Soille et al., Future Generation of 
Computer Systems, 2017 DOI: 
1010.1016/j.future.2017.11.007 (in press)

http://dx.doi10.1016/j.future.2017.11.007




JEODPP batch processing: JEO-batch 

• Running large-scale data processing tasks in a 
cluster environment

• Docker containers for flexible management of 
processing environments

• Custom builds for different requirements

• Facilitates upgrades of processing environment 

• Run through a workload manager:

HTCondor scheduler

• Extensive use for large scale processing/analysis



• “Optimal”: 100% cloud free

• The selection was made from 

2,128,556 optical remote

sensing images.

• Each image was assigned to 

one core.

• No dependencies between jobs

Optimizing Sentinel-2 image selection
in a Big Data Context - Running in Docker universe

Global S2 Quick look Mosaic doi:10.1080/20964471.2017.1407489

https://doi.org/10.1080/20964471.2017.1407489


• 50 years simulation over the 

Mediterranean sea.

Mediterranean Sea simulation 1958-2013 
Running in Parallel universe + Docker Swarm

Hydrodynamic and ecosystem simulations
http://mcc.jrc.ec.europa.eu

• CERN EOS is used for

the main storage, in 

cooperation with

NETAPP NFS and local 

scratch

• MPI application

• MESOS is used



From a Jupyter notebook, the Dask python package (https://dask.org)

provides an interface to a Kubernetes cluster with Dask workers
so that any operation on a NumPy array is transparently and 
automatically executed over multiple nodes and their CPUs.

Advantages of using Dask:
Designed to parallelize the Python ecosystem

• Flexible parallel computing paradigm;

• Parallelize existing Python code in transparent

way for the users (no need to adapt the code)

• Co-developed with Pandas/SKLearn/Jupyter teams

• Ideal for analysis of large raster files

Scales
• Scales from multicore to 1,000-node clusters

• Resilience, responsive, and real-time

Use Cases
- DEM analysis for 

Erosion Index over
all Europe

- Metereological raster
analysis for forecasting
purposes

Dask on Kubernetes



Dask on Kubernetes/JEODPP

JEODPP 
access

numpy



• Web interface to visualize and analyze big geospatial 
data 

• Allows fast search and display of complex dataset

• Creates an agile test environment for raster and vector 
processing algorithms thanks to the immediate display 
of the output results

• Available for geospatial expert with some         
programming capabilities

• Allows easy creation of GUI applications for non 
programmers (ipywidgets, ipyleaflet, bqplot, qgrid)

• Extension in near future to app-mode using Voila

JEODPP Interactive visualisation
and analysis: JEO-lab



Deferred processing

• No data is pre-calculated, similarly to Google Earth 
Engine platform

• Processing steps, their input parameters and their 
combinations in processing chains are defined by 
the user in the python client environment and saved 
in JSON format

• Processing chains are executed server side in a highly 
parallel infrastructure by an image processing C++ 
library having a direct access to data: TileEngine

• Results are sent via HTTPS to the ipyleaflet client



Deferred processing in action

coll = inter.ImageCollection(collections.Sentinel2)

coll.filterOnGeoName("Ispra")

coll.filterOnDay(2017,10,14)

p = coll.process().band("B04").maskLT(800).colorCustom(["red","yellow","green"])

map.addLayer(p)

Python code written 
in a notebook cell



Deferred processing in action

Json =
{"Collection":2,"ColorInterpolate":true,"ColorMap":null,"ColorMapApply":false,"ColorSchemeCustom":true,

"ColorSchemeName":"custom","CountScaling":1,"CustomColors":[255,65535,32768],"IsCount":false,

"IsND":false,"IsRGB":false,"OptimizeStats":false,

"R":"B04","Ravgmean":1028.0899999999999,"Ravgsdev":767.27999999999997,"Rmax":2000,"Rmin":600,

"SubCollection":0,"_coll":2,"attribution":"","combine":null,"databand":0,"interpolate":0,

"oids":[704778,1341473],"opacity":255,"quicklooks":false,"rm":0,

"steps":[{"Alg":"Mask","UseValues":true,"isvalid":true,"maxvalue":800,"minvalue":0}]}

Key = f21d1dc1d2b78b4a5bb1b073433146ff

Python kernel interprets the processing chain and 
converts it to a JSON string and an unique key that 

are stored in a REDIS key/value store



Deferred processing in action

A new Tile layer, identified by 
the processing chain key, is 
added to the ipyleaflet map 

on the web page

ipyleaflet asks the Tile Engine to 
produce the tiles for the layer, 

passing the processing chain key at 
each request

HTTPS requests 
for each tile

Tile images 
sent back

The Tile Engine is 
a C++ service 

running in a HPC 
cluster



An example with DEM hillshade display



One step further: Python code injected 
server-side

Need to increase user flexibility

Need to use available python libraries

Why not allow to inject custom python code to the server-side 
processing chain Tile Engine running in the HPC?

Function definition and function call are converted to 
strings using python inspect module (getsource and 
getcallargs functions)

A special processing step, called execute, was implemented

For security reasons the list of available libraries is limited but 
customizable on-demand



Python code injected server-side

For each tile requested by the 
ipyleaflet map, the C++ server code 
creates a python interpreter instance 
(python embedding) and:

• executes in it the python function 
definition

• creates a multi-dimensional 
Numpy array and fills it with the 
results obtained from the previous 
steps of the precession chain

• executes the python function call

• Reads the result returned by the 
user function and passes it to the 
next step of the chain

def maskpy(img, n):
return img[img<=n] = 0



An example: stubble burning mapping
Courtesy: JRC Directorate D Sustainable Resources, D.5 Food Security

• Deliberate setting fire of the straw stubble that 
remains after wheat and other grains have been 
harvested. 

• The practice was widespread until the 1990s, when 
governments increasingly restricted its use

• Many risks:

• Pollution from smoke

• Risk of fires spreading 

out of control

• …



Detection of stubble burning from satellite images 
using python code injected server-side

def stubble(img, v4, v6, v8, v11min, v11max):

b4,b6,b8,b11 = img[0],img[1],img[2],img[3]

res = numpy.ones_like(b4)

res[b4>=v4] = 0

res[b6>=v6] = 0

res[b8>=v8] = 0

res[numpy.logical_or(b11<=v11min, 

b11>=v11max)] = 0

return res

p = coll.processMulti(["B04","B06","B08","B11"])

.execute(stubble,1000,1200,1200,500,1600)

.band(0).scale(0,1).colorCustom(["Lime"])

Function definiton that implements the stubble 
burning algorithm:

Multi-band processing chain containing the python function call:

B04 < 1000 AND
B06 < 1200 AND
B08 < 1200 AND
B11 > 500   AND
B11 < 1600

Stubble burning 
detection for 
Sentinel2:



Detection of stubble burning from satellite images 
using python code injected server-side



Takeaway message

• Multi-petabyte scale platform 

• Versatile environment for Big data visualization, 
analysis and processing

• With the server-side injection of python code, 
deferred processing for interactive visualization is 
even more flexible and open

• Batch and interactive processing are available and 
will be even more linked in the near future (JEO-lab 
as a fast prototyping environment to test and create 
complex batch processing jobs)



Thank you for your attention!

EO&SS@BigData
pilot project

Unit I.3 Text and Data Mining Unit
Directorate I Competences

GEO-WEEK, Washington DC, Oct 2017

https://doi.org/10.1016/j.future.2017.11.007
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