

Electron lens for Landau damping

X. Buffat, S. Antipov, E. Métral

Many thanks to D. Amorim, N. Biancacci, L. Carver, G. Iadarola, N. Mounet, T. Pieloni, A. Romano, B. Salvant and C. Tambasco

WP2 meeting - 08.05.2018

Content

- LHC experience with octupoles for Landau damping
 - HL-LHC requirements
- Electron lens potential and concerns
 - Orbit stability
 - Noise (current jitter)
- Summary

LHC experience with octupoles – Run I

- During operation in 2012, it became clear that operation with octupoles for Landau damping needed to be re-visited
 - \rightarrow Interplay with beam-beam effects, lattice non-linearities and linear coupling

0.324

0.322

0.320

0.316

0.314

0.312

Q 0.318

- Already then, the benefits of the head-on tune spread was considered as potential solution to relax the brightness limitation
- Thanks to its effect on the core, the head-on / electron lens induced tune spread spread is more effcient at providing Landau damping

X. Buffat, et al., Squeeze with colliding beams, Evian 2012

LHC experience with octupoles – Run II

- Tight control of the machine linear and non-linear optics reduced the discrepancy with the model to a factor ~ 2 at flat top
- The effect of noise/external excitations is suspected to play a role in this factor, due to the long latencies observed (up to 45 minutes)

LHC experience with octupoles – Electron cloud instabilities

- A strong octupole current is needed at injection to stabilise ecloud instabilities
- The head-on tune spread was not sufficient to stabilise the e- cloud instability at top energy

(see A. Romano, et al., Electron cloud instabilities triggered by low bunch intensity at the Large Hadron Collider, Phys. Rev. Accel. Beams, 2018)

 \rightarrow The capacity of the e-lens to outperform the octupoles against electron cloud instabilities at injection is not granted

HL-LHC requirement

- A small telesopic squeeze is needed already at flat top to recover the stability margins of a factor 2, including the low impedance collimator upgrade (Ultimate BCMS scenario)
 - A Gaussian distribution cut at 3 sigma is considered for Landau damping
- The ultimate BCMS scenario without collimator upgrade would rely on a large telescopic index
 - Limits of the RATS still need to be estimated (optics)

Gaussian e-lens potential

Large and efficient tune spread, due its large impact on the beam core and its reduced impact on dynamic aperture w.r.t. octupole magnets

- ~10 times larger stability diagram than maximum octupole current (without RATS) achievable for reasonable electron beam parameters
- Potential to improve even further the efficiency by using more advanced electron beam profiles

E-lens potential

- Mostly interesting at the design stage (e.g. HE-LHC / FCC-hh) to consider as a replacement for octupole magnets, thanks in particular to the favourable scaling with the energy
- > Here we focus on the HL-LHC project :

 \rightarrow Replace the low impedance collimator upgrade, in particular if the capability of the RATS is limited (studies needed)

 \rightarrow Stabilise the electron cloud instability at injection with a reduced impact on the beam lifetime (studies needed)

- \rightarrow Adjust the current to the needs of individual bunches (non-colliding bunches)
- \rightarrow Reduce dependence on the tail distribution
- \rightarrow Provide large margins (X10) for unkowns

Concerns for operation

- Only used operationally in RHIC for head-on beam-beam compensation (not for Landau damping)
 - Observed noise induced losses and emittance growth (current jitter) W. Fischer et al, Phys. Rev. Accel. Beams 20, 091001
- Need to avoid loss of Landau damping with offset at the electron lens (similar to head-on collision, tolerances to be defined)
 - Orbit jitter (machine variations and PACMAN effects)
- Bringing the beams into collision
 - Landau damping when the changing the tune shift sign to be studied

Summary

- An e-lens has a large potential to relax brightness limitations due to collective instabilities in high energy machine, possibly higher than usual octupole magnets
- The HL-LHC baseline (nominal and ultimate) does not need an electron lens for Landau damping, however there is a potential to :
 - Improve the beam stability at injection, and consequently the preservation of the beam quality
 - Improve the beam stability at flat top, possibly removing the need for a low impedance collimator upgrade and RATS
- In both cases detailed studies are needed to estimate the limits of the scheme

