

Detector development projects in Budapest

RMKI - ELTE Gaseous Detector

Research and Development Group

ELTE, MTA RMKI Collaboration (Budapest, Hungary):

G. Bencze, E. Dénes, G. Hamar, A.László, D.Varga,

Students: D.Csallóközi, T.Győri, P.Horváth, G.Kiss,

K.Márton, M.Pék

RD51 Collaboration Meeting, 23-15.11.2009., CERN

Outline

- High P_T Trigger Detector for ALICE VHMPID
 - ALICE and its PID
 - VHMPID
 - Need for a trigger for VHMPID
 - Trigger detector requirements, possiblities
 - Technological choises, studies so far
- NA61 Centrality Detector
 - NA61
 - Ideas for detecting grey protons
 - Technological choises, studies so far

ALICE

(A Large Ion Collider Experiment)

ITS, TPC, TRD, TOF, Muon Arm, ZDC, V0, T0,

HMPID, EMCal, PHOS, VHMPID?

PID at ALICE

Physics motivations

- π , K, p yields at 5 GeV < p_T < 20 GeV
 - **P**roton/pion anomaly (~ RHIC)
 - Prticle production mechanisms (thermal,coalescence,pQCD)
 - Fragmentation function at the QGP
 - Jet energy loss, flavour dependence
 - High p_{T} D- and B-meson and Λ_{c} , Λ_{b} -baryon reconstruction
- Near-side hadron-hadron correlations
 - B-M (π -p) and B-aB (p-p) correlation (~ RHIC)
 - Di- and Multihadron FF (D_{BM} ?=? D_B*D_M ; D_B*D_{aB} ...)
- Cooperation with other specail detectors at ALICE
 - Near-side photon-hadron correlations : PHOS
 - Away-side jet-photon correalations : **EMCAL**

VHMPID in ALICE

- Event by event analyses
- PID in the region:5 GeV/c < pT
- Cherenkov radiation: only gas can be used
- Mirror generated circles
- Need for an L1 trigger: within 5 µs

Very High Momentum Particle Identification Detector

HPTD in **ALICE**

High P_T **Trigger Detector**

- VFAT applicability?
- Simple pattern recognition with FPGAs

- Measure particle inclination
- Good resolution along the direction of bending
- Pad size optimization through simulations (2-5 mm wide)
- Detector requirement
 - high granularity (pads<2cm²)
 - high multitrack resolution
 - no amplitude meas. needed
 - narrow response function(1 pad/hit)

HPTD prototype with TGEMs

Technologial choises, studies

TGEM

- Test chambers, test beam at PS last year,
 results presented at the Collaboration Meeting in Paris
- Problems with sparking

Classical MWPC

- wide response function
- Modified MWPC (CCC)
 - narrow response function wire chamber
 - test beam at PS, last month
- Micromegas (Forseen first prototype and beam test in 2010)
- **GEM** (Forseen first prototype and beam test in 2010)

NA61 Centrality Detector via Low Momentum Multiplicity and Identification detector

- h+A interactions: low momentum (gray) particle measurement: energy and identification.
- Centrality measurement, transition from "black" evaporation component to "gray" knock-on protons

• A+A interactions: backward multiplicity (centrality or forward-backward correlation)

UPSTREAM VIEW (BEAM DIRECTION) Readout pads (NA61 FE electronics) Readout chamber (GEM or MWPC) Gas envelope 25-30 cm Outer field-cage Absorber Target layers (inner field-cage] (Drift) HV plane 12-15 cm

Principle of operation

- Simultaneous measurement of dE/dx and range: energy and identification
- Intervals in particle range defined by absorber layers (constant thickness to be traversed)
- dE/dx measured over order
 of 1 cm in a small TPC
 (field cage printed on absorber)
- Electronics: same as for NA61!

Operation principle: Simulation

- Preliminary! PAI (Fermi-) model of ionization
- Below: deposit distribution in range intervals

Clearly identified proton and pion peak!

Momentum (energy) – range relation

 Useful range: 0.5 – 20 mm in PET (shorter in heavier material, e.g. Cu); minimal target thickness needed.

Arrows indicate the ranges on figures before

Hadronic effects to be considered in refined analysis!

Technologival choises, studies

- Readout technology:
 GEM (possibility of complete cylindrical structure)
 or MWPC (as in NA49 TPC-s)
- Radial pad structure
 - Pad sizes to be optimized (resolution, ionization)
 (total pad number: 1 CT board)
 - Cylindrical structure: more complicated absorber construction (thickness varies with height!)
 - Polygonal structure: simpler, with dead zones
- Studies so far: test beam with first prototype

Cylindrical structure

Polygonal structure

Summary

- High P_T Trigger Detector for VHMPID
 - VHMPID: new R&D for ALICE
 - Need for a trigger: HPTD
 - Fast, high granularity, narrow response,
 1bit digitalization, pattern recognition.
- NA61 Centality Detector
 - Detecting grey protons via range and dE/dx
 - Field cage on absorbers
 - Slow protons, wide dE/dx range,
 geometry embraces the target, NA61 electronics