October Test beam - THGEM group

Alessandria-CERN-Freiburg-Liberec-Prague-Torino-Trieste Collaboration

4th RD51 collaboration meeting

24.11.2009

Jarda Polak

Reminder

- Intense R&D activity towards THGEM-based photon detectors.
- Testing prototypes with X-rays, Csl.
 Significant improvement in 2009 (pushing the gain up to 10⁶)
- Photoelectron collection efficiency under study. Need of IBF study.

Need to demonstrate THGEM operation in real conditions

- In the LAB detector looks very promising
- What is the behavior in realistic conditions: MIPS + single photons (stability, response of detector,..)
- Dedicated setup has been build
 - <u>2 chambers with Csl + quartz radiator</u> 30x30mm² triple THGEM 100x100mm² triple THGEM
 - Setup allows full control and monitoring

4th RD51 collaboration meeting

24.11.2009

Small 30x30mm² THGEM

Using same structure as detector tested in the LAB in 2009

Triple THGEM (CsI) $Ar/CH_4 50/50$

Diam=0.4 mm, pitch =0.8, Thick=0.4, rim $\leq 10 \ \mu m$

- HV provided by resistive divider
- Currents measured at BOTTOM3 and TOP1

Goal: full control + possibility to check performance of chamber

- External illumination pulsed UV laser
 (monitoring currents, analog readout, digital readout in single photon mode)
- Adjustable quartz radiator Cherenkov photons

4th RD51 collaboration meeting

24.11.2009

Quartz radiator

Window for LASER -

4th RD51 collaboration meeting

24.11.2009

Jarda Polak

NO beam + laser

Digital readout

BEAM ON = serious problem with stability

Max. sustainable gain: Low intensity beam: ~ 1-2.10⁵ High intensity beam: ~ 4.10⁴

Timing peak

HIGH intensity beam gain: ~ 4.10⁴

LASER + NO BEAM gain: ~ 7.10⁴

First indication of Cherenkov light

HIGH intensity beam gain: ~ 4.10⁴

2 different positions of radiator (change of 20mm)

4th RD51 collaboration meeting

24.11.2009

Jarda Polak

100x100mm² THGEM - trial installation (looking for Cherenkov rings)

Solving many engineering problems, understanding the chamber.

We did not have enough time to solve all problems related to coupling of electronics to detector

Conclusions

- Multiple THGEM with Csl prototype build and put in SPS test beam with radiator for checking stability in experimental conditions.
- Detector did not show specific deterioration when no beam – exactly the same response (gain up to 10⁶)
- At beam need to operate this particular detector at low gain
- Preliminary indication of Cherenkov light seen by THGEM + Csl
- This was first test, we need to improve...

...more test beams needed (in 2010).

this work is progressing thanks to many colleagues...

M. Alexeev^a, R. Birsa^b, F. Bradamante^c, A. Bressan^c, M. Chiosso^d, P. Ciliberti^c, G. Croci^e, M. Colantoni^f, S. Dalla Torre^b, S. Duarte Pinto^e, O. Denisov^f, V. Diaz^b, N. Dibiase^d, V. Duic^c, A. Ferrero^d, M. Finger^g, M. Finger Jr^g, H. Fischer^h,G. Giacominiⁱ,b, M. Giorgi^c, B. Gobbo^b, R. Hagemann^h, F. H. Heinsius^h, K. Königsmann^h, D. Kramer^j, S. Levorato^c, A. Maggiora^f, A. Martin^c, G. Menon^b, A. Mutter^h, F. Nerling^h, D. Panzieri^a, G. Pesaro^c, J. Polak^b, J. E. Rocco^d, L. Ropelewski^e, F. Sauli^e, P. Schiavon^c, C. Schill^h, M. Slunecka^j, F. Sozzi^c, L. Steiger^j, M. Sulc^j, M. Svec^j, S. Takekawa^c, F. Tessarotto^b, H. Wollny^h

- a INFN, Sezione di Torino and University of East Piemonte, Alessandria, Italy
- b INFN, Sezione di Trieste, Trieste, Italy
- c INFN, Sezione di Trieste and University of Trieste, Trieste, Italy
- d INFN, Sezione di Torino and University of Torino, Torino, Italy
- e CERN, European Organization for Nuclear Research, Geneva, Switzerland
- f INFN, Sezione di Torino, Torino, Italy
- g Charles University, Prague, Czech Republic and JINR, Dubna, Russia
- h Universität Freiburg, Physikalisches Institut, Freiburg, Germany
- i University of Bari, Bari, Italy
- j Technical University of Liberec, Liberec, Czech Republic

UV LIGHT PULSED SOURCES

1. Model UV LED-255

by Seoul Optodevice Co., Ltd, Seoul, Korea (South

- Central wavelength 255 ± 10 nm
- Spectral line width: <20nm FWHM</p>
 - also called <u>germicidal ray (disinfection)</u>
 - Applications: Water/Surface purification, Laboratory testing
- 2. PLS 265-10 (pulsed LED) and controller

by PicoQuant GmbH, Berlin, Germany

- 600 ps ong pulses
- up to 40 MHz

HV scan in "photon counting" (relative efficiency)

