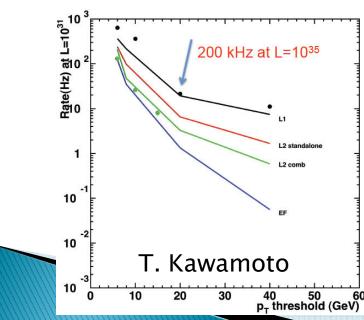
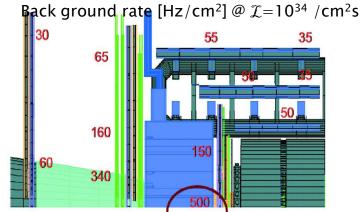
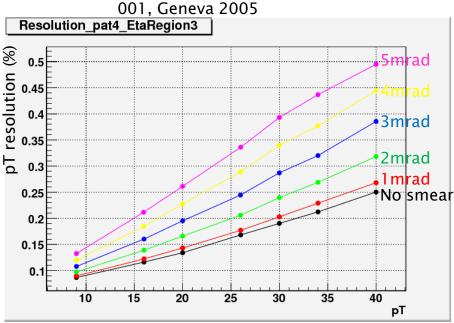
Micro Pixel Chamber for ATLAS muon upgrade

Proposal and current status of developments


Atsuhiko Ochi (Kobe University)

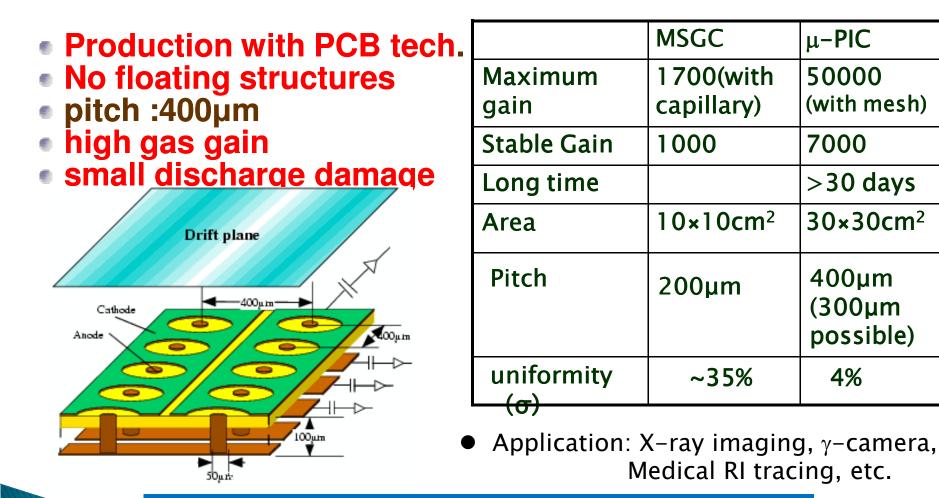

4th RD51 meeting (WG1) 23 November 2009

Introduction


Endcap muon system on SLHC

- Requirements for muon detector
 - Lower occupancy
 - <30% for 5kHz/cm² of cavern BG.
 - Strong reduction of LVL1 trigger
 - <100kHz @ endcap muon</p>
 - Angular resolution at SW < ~1 mrad

Baranov et al. : ATL-GEN-2005-


pT resolution for each angular resolution at SW (T. Domae, 2009) 1.55< $\eta < 1.95$

Current detector candidates of ATLAS endcap muon upgrade

- Fine TGC, Fine MDT and Bulk MicroMEGAS have been already proposed as ATLAS endcap muon upgrade. (Phase-I and II)
- Our µ-PIC was newly proposed as phase-II upgrade.

	LVL1 Trig?	Dime nsion	Posi. resol. [µm]	Ang. resol. [mrad]	Max. rate [Hz/cm²]	Timing req. [nsec]	Read elec.	Area / unit [m²]	Cost [CHF/m ²]
μ-PIC	\bigcirc	$2 + \alpha$	60~ 115	0.3	>109	<20	Hit only	<0.1	104
Fine TGC	0	2	$50\sim$ 100		105	25	ADC	2	104
Fine MDT	×	1	112		10 ³	200	Hit Timing		
Micro Megas	0	2	100		1011	5	?	2	

Basic design of existance μ -PIC

We need more gain and timing resolution for muon trigger

μ-PIC

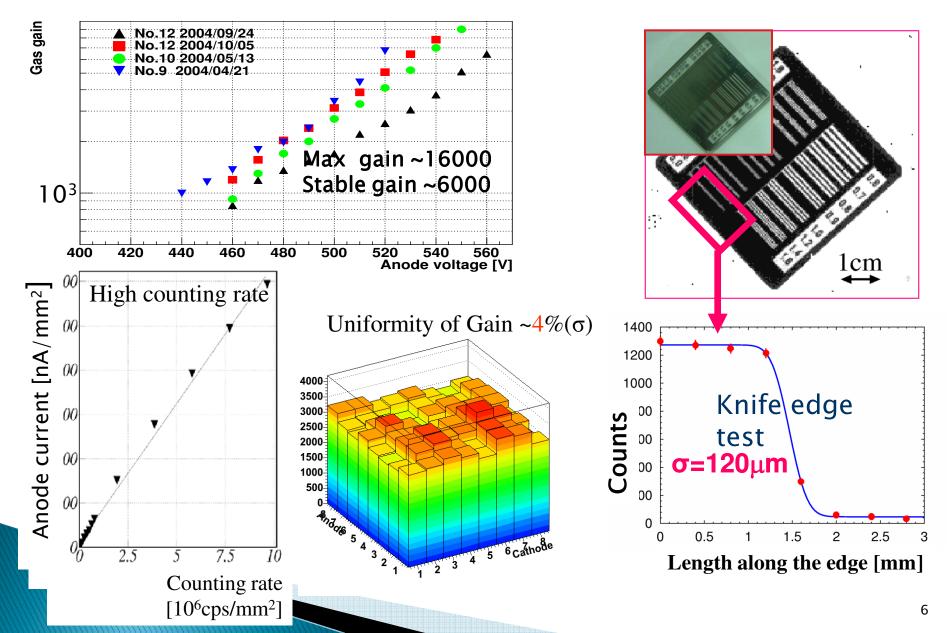
50000

7000

(with mesh)

>30 days

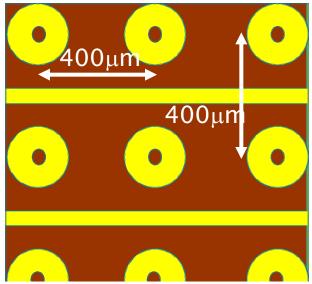
30×30cm²

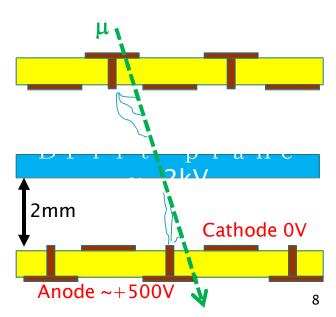

400µm

(300µm

4%

possible)

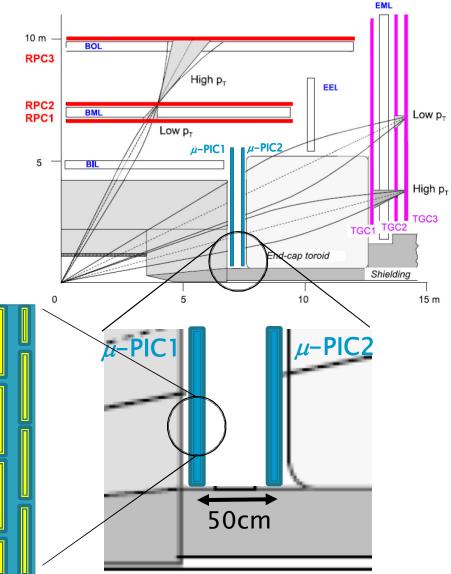

Performances of existance μ –PIC



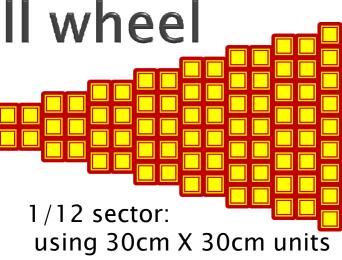
Our plan of ATLAS endcap muon upgrade

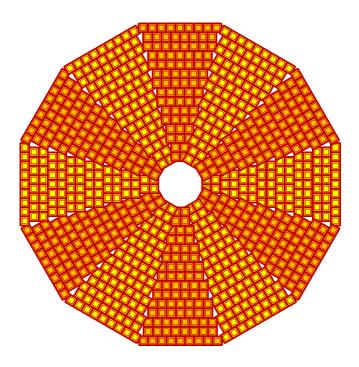
New design for ATLAS

- 400µm spacing of readout
 - Proven design
 - Position resolution $400\mu m/sqrt(12) = 115\mu m$
- Thin Gap structure
 - Gap spacing : 1.5mm 2mm
 - Fast signal (<25nsec)
 - High gas gain
 - Appling a few kV in drift plane.
- Doublet structure
 - Improving position resolution
 - $\sigma \sim 60 \mu m$ with staggering
 - Reduction of non track hit
 - Such as neutron hit
 - Covering the dead space of joint
 - μ-PIC will operate as both LVL1 trigger and precision detector



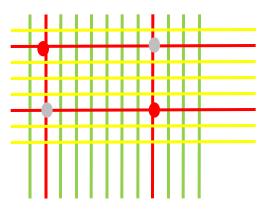
Layout in ATLAS


- Detector role
 - Replacement of CSC, FI TGC and EIL MDT
 - Trigger + Precision
- Layout
 - 2 doublets is placed with 50cm spacing


Angler resolution: 0.3mrad (50cm/115µm)

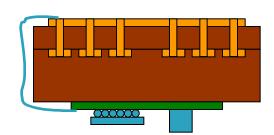
Layout in small wheel

- Detector units layout
 - In the form of tile
 - In case of 30cm X 30cm
 - About 80 units / 1 sector (sector = 1/12 sector)
 - About 1000 units / layer
 - Total 8000 units for 8 layer
 - In case of 10cm X 10cm
 - Total 72,000 units



Small unit is NOT disadvantage!

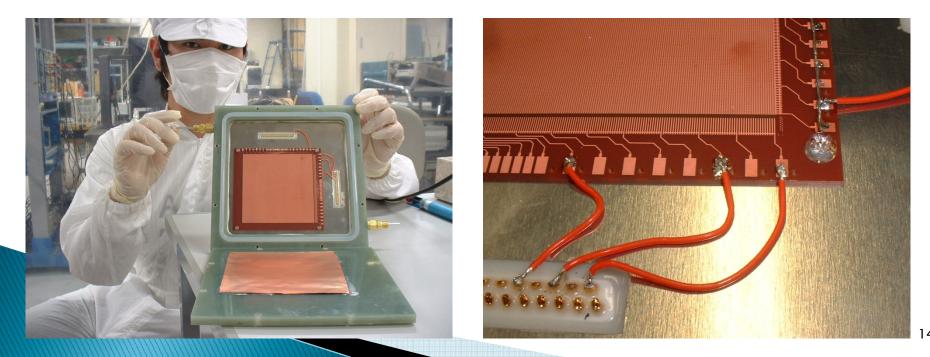
- Unit size of μ -PIC is quite small
 - e.g. Size of TGC / MicroMEGAS are 1m X 2m
- But, in SLHC small wheel (5kHz/cm² BG), Small size chambers have great advantage.
- Where two dimensional coincidence obtaining from strips, Occupancies and Multiplicities are ...


Area	Hit rate [Hz/unit]	Occu pancy	Multip licity
10cm x 10cm	5x10 ⁵	1.3%	0.01%
30cm x 30cm	4.5x10 ⁶	11%	0.6%
lm x lm	5x10 ⁷	125%	36%

We don't need to prepare large (a few m²) detector

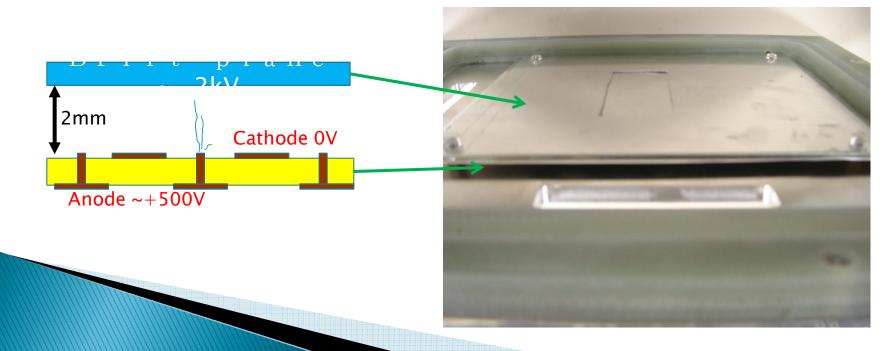
Advantages of this plan

- Fine position resolution with 2-dimensional read out
 - $\circ~$ 400 μm pitch, $\sigma \sim 120 \mu m$
 - $\circ~\sigma \sim 60 \mu m$ with staggering doublet
- Fast signal and small latency
 - Small timing resolution <~10ns with short latency <~20ns
- Both LVL1 trigger and precision measurements
- MUON slope can be measure in LVL1 trigger
 - Angler resolution ~ 0.3mrad with two station with 50cm distance
 - Pt resolution will be improved
 - LVL1 rate is improved several times
- Lower occupancy using small pad
 - Precision positions are supplied from each unit immediately

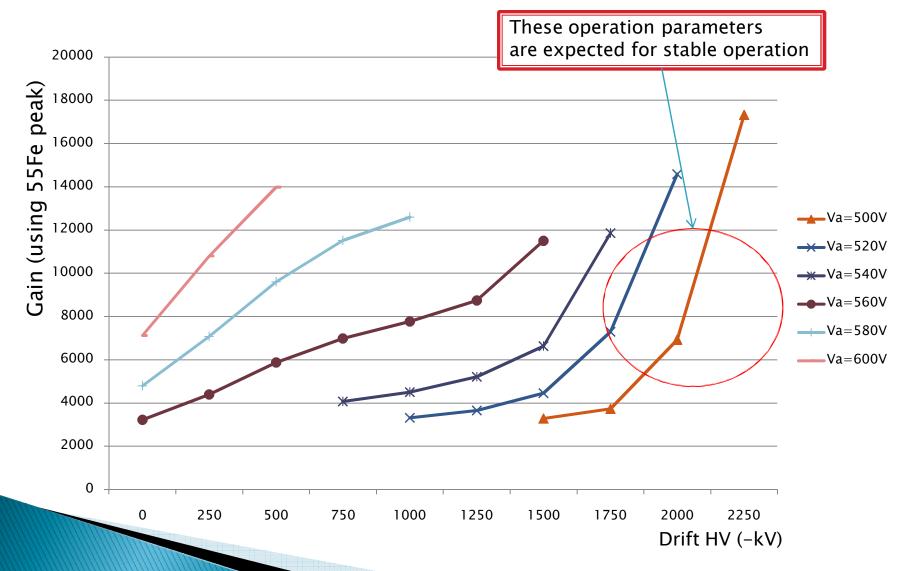

Basic performance tests of prototype thin gap µ-PIC

33 1. Gain curve

2. Spark probability using α source

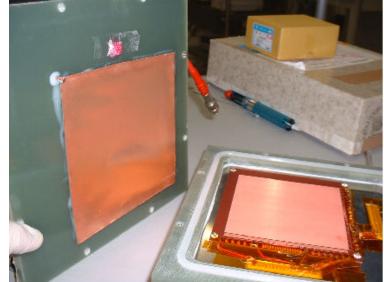

Prototype of µ–PIC

- 10cm x 10cm detection area
- Readout pixel: 400µm x 400µm pitch
- Drift space: 1cm or 2mm
- Gas: Ar 90% + C2H6 10%
- Readout electronics: ATLAS ASD (Analogue out)



Operation test of thin gap type

- For ATLAS muon detector
 Detection volume is 1mm ~ 2mm
 - Higher timing resolution (<25nsec)
 - Higher gain with stable operation (a few kV of negative HV is applied)



Gain curves for higher drift field

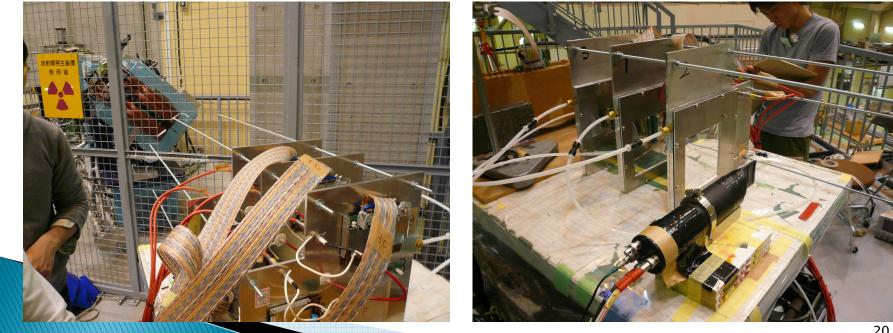
α particle test

- $\blacktriangleright \alpha$ source inserted inside the chamber
 - Using thorium-contained material
 - A few Bq is estimated
 - Energy of α: 4MeV ~ 9MeV (range: 2.5cm ~ 8.5cm)
 - A source was set beside detection area
- Saturated large pulses were observed (yellow line of the right picture)
- Discharge probabilities (HV over current counting)
 - These discharges are resumed quickly. It doesn't go to continuous discharges.

α test in thin gap $\mu\text{-PIC}$

V_anode	V_drift	Est. gain	# of α	# of spark
540	750	4000	200	0
540	1000	4500	200	0
540	1250	5200	70	3
520	1500	4455	200	0
520	1750	7300	200	1 (?)

- There are no (or small fraction of) sparks around gain of 5000 using thin gap configuration.
 - Nevertheless using Ar based gas (Streamer might be produce in large energy deposit)
- More gas studies will be continued.
 - > Aim of stable gain ... 10000
- These are very good evidence for stable operation under heavy energy deposit.


Next step for development

Beam tests

- Position/Timing resolution (charged particle)
- Operation under higher hadronic BG. (neutron)
- Aging and longtime operation
- Mass production
 - Design suited for mass production
 - Readout electronics
- New design to overcome the discharge
 - Using resistive material

Beam test in KEK Fuji beamline

- From last week, we are preparing the 3 μ -PICs on 2GeV electron beam line.
- Beam intensity is very low, (a few counts/cm2)
 - It will be used only for checking timing and position resolutions.
- These tests will be done in next week!

Mass Production

- ▶ µ−PIC sensor part
 - Commercial available using PCB mass production technique
 - $\circ\,$ One company said, it is possible to make $\mu-PIC$ structure less than 12kCHF/m².
- Packaging/assembling/readout
 - Under consideration
 - Role of front-end electronics will be light due to higher operation gain (~10000).

Design to overcome discharges

- We want MIP readout (gain needs ~10000), but there are many neutron BG.
- To reduce discharges,
 - Cathodes are surrounded by resistive sheet
- We need Rui's help to make this structure.

Conclusion

- Micro Pixel Chamber (μ–PIC) is proposed as detector for phase–II ATLAS muon upgrade.
 - Trigger + Precision at inner station
 - Production cost is not so much high
 - <12kCHF / m² (Detector board + ASIC connection)
- Prototype was made and tested
 - Gain curves \rightarrow >10000 attained stably
 - Discharge probabilities using α particle are measured
 - Electron beam test (2GeV) is ongoing
- Beam tests are scheduled for more advanced tests
 More advices and helps are need from RD51!
 Welcome you to join our developments