

Initial Panel

C. Oliveira

Purpose

VUV emission Energy Diagram Excimers

Model

uE geometr Results Validation

MPGDs

Model applicatio Results

Conclusions

Future Work

Xe electroluminescence assessment in uniform field geometry and GEM using Garfield and Magboltz

C. A. B. Oliveira¹ A. L. Ferreira¹ J. F. C. A. Veloso¹ S. Biagi² R. Veenhof³ J. M. F. dos Santos⁴ C. M. B. Monteiro⁴

¹I3N, Physics Department, University of Aveiro, Aveiro, Portugal

²Physics Department, University of Liverpool, Liverpool, UK

³CERN, Geneva, Switzerland

⁴GIAN, Physics Department, University of Coimbra, Coimbra, Portugal

24/11/2009 - 4th RD51 Collaboration Meeting

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Purpose of the work

Initial Panel

C. Oliveira

Purpose

VUV emissio Energy Diagram Excimers

Model

uE geometry Results Validation

MPGDs

Model application Results

Conclusions

Future Work

• Study of the physical processes of light emission during

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- e- avalanches
- This information can be useful for:
 - Dark Matter research
 - $\beta\beta \mathbf{0}\nu$
 - other TPCs

Atomic Energy Diagram

Excimers Formation & Decay

Initial Panel

C. Oliveira

Purpose

VUV emissio Energy Diagram Excimers

Model

UE geometry Results Validation

MPGDs

- Model applicatio Results
- Conclusions
- Future Work

- Eximer formation (3 body collision)
 - $\textit{R}^* + 2\textit{R} \rightarrow \textit{R}_2^{**} + \textit{R}$
- Direct radiative decay (p < 400mbar)
 - $R_2^{**}
 ightarrow 2R + h
 u$
- Vibrational & radiative decays (*p* > 400*mbar*)

 $egin{aligned} R_2^{**} + R &
ightarrow R_2^* + R \ R_2^* &
ightarrow 2R + h
u \end{aligned}$

Simulation model

Initial Panel

C. Oliveira

Purpose

VUV emissic Energy Diagram Excimers

Model

uE geometry Results Validation

MPGDs Model applica Results

- Conclusions
- Future Work

- Microscopic technique of Garfield 9
- Vacuum trajectory between collisions for $e_{\rm s}^-$
- $\lambda(\varepsilon) = \frac{e^{-x/l(\varepsilon)}}{l(\varepsilon)}$ Null-collision technique [H.R. Skullerud 1968]
- X sections from Magboltz 7.1

- 4 groups of excitations:
 - $\epsilon_{\it exc_1} = 8.315 eV$
 - $\epsilon_{exc_2} = 9.447 eV$

$$\epsilon_{exc_3} = 9.917 eV$$

$$\epsilon_{exc_4} = 11.7 eV$$

1 excited state ->

 -> 1 VUV (ε_{sci} = 7.2eV)

Uniform field geometry Results

C. Oliveira

Purpose

VUV emission Energy Diagram Excimers

Model

uE geometry

Results Validation

MPGDs

Model application Results

Conclusions

Future Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Initial Panel

Uniform field geometry Results

MPGDs

Model application Results

- Conclusions
- Future Work

σ_{NUV} peak

 new x-sections

 ^{σ²_{NUV}}/_{N²_{UV}} decreases until
 ionisations begin
 for (E/N) > 15Td
 ionisation fluctuations

dominate

Uniform field geometry Validation

 Good agreement with former simulation work and experimental data

(日)

Santos et al \equiv J.Appl.Phys. 27 (1994) 42, Monteiro et al \equiv JInst 2 (2007) P05001

Model applied to MPGD's GEM case

Initial Panel

C. Oliveira

Purpose

VUV emission Energy Diagram Excimers

Model

uE geometry Results Validation

MPGDs

Model application Results

- Conclusions
- Future Work

Monteiro et al, PLB677 (2009) 133

- Ansys 11 field maps
- *z_{start}* = 250µm
- random (x, y)
- random ε_{start} (Magboltz)

Results

GEM - light and charge distributions

Initial Panel

C. Oliveira

Purpose

VUV emission Energy Diagram Excimers

Model

uE geometry Results Validation

MPGDs Model application Results

Conclusions

• $E_{drift} = 0.5kVcm^{-1}$ • $E_{ind} = -0.1kVcm^{-1}$ • p = 1.0bar

T = 300K

 $V_{GEM} = 400V$

Results GEM - Scintillation Yield

 $E_{drift} = 0.5kVcm^{-1}$ $E_{ind} = -0.1kVcm^{-1}$

T = 300K

Initial Panel

C. Oliveira

Purpose

VUV emission Energy Diagram Excimers

Model

uE geometry Results Validation

MPGDs

- Model application Results
- Conclusions
- Future Work

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

- Similar behavior as experimental data
- Little differences are being studied
 - low V_{GEM} : $N_{exc,1/2^+} \sim N_{exc,1/2^-}$ (photon block)
 - high V_{GEM}: charging up ??
 - *E* modulation via finite elements method ??

Results GEM - Electrons ending at kapton

Initial Panel

C. Oliveira

$$E_{drift} = 0.5 kV cm^{-1}, E_{ind} = -0.1 kV cm^{-1}, T = 300 K, p = 1.0 bar, V_{GEM} = 400 V$$

Purpose

VUV emission Energy Diagram Excimers

Model

uE geome Results Validation

MPGDs Model applicat Results

Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- \vec{E} is modified
- Charging-up is being studied (iterative modulation of \vec{E})

Results GEM - Ratio between light and charge

Initial Panel

C. Oliveira

Model application Results

• $N_{exc} >> N_{e}$ • $\frac{N_{exc}}{N_e}$ increases with p

(λ decreases -> less $\varepsilon_{electron}$

-> Pion decreases)

Results GEM - Light and charge fluctuations

Initial Panel

C. Oliveira

Purpose

VUV emission Energy Diagram Excimers

Model

UE geometr Results Validation

MPGDs Model application Results

Conclusions

• $J_{VUV} = \frac{\sigma_{N_{VUV}}^2}{\overline{N}_{VUV}^2}$ • $f_e = \frac{\sigma_{N_e}^2}{\overline{N}_e^2}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results

Monochromatic x-ray full energy absorption peaks

Initial Panel

C. Oliveira

Purpose

VUV emissio Energy Diagram Excimers

Model

uE geometry Results Validation

MPGDs Model application Results

Conclusions

- Dias et al, J.Appl.Phys. 82 (1997) 2742
 - $W_{5.9keV} = 22.4eV$
 - W_{22.1keV} = 22.1eV
 - F_{5.9keV} = 0.20
 - F_{22.1keV} = 0.17

Monteiro et al, JInst 2 (2007) P09010

- $R_{sci,22.1keV,400V} \sim 9\%$
- $R_{e^-,22.1 keV,490V} \sim 10\%$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conclusions

Initial Panel

C. Oliveira

Purpose

VUV emission Energy Diagram Excimers

Model

uE geometry Results Validation

MPGDs Model applicati

Conclusions

Future Work

- A simulation tool based in Magboltz / Garfield was developed to follow produced excited states in Xe avalanches
- Q_{exc} , Q_{sci} , Y was accessed in uniform \vec{E} geometry
- Y was accessed in GEM (same behavior as experimental data)
- $\frac{N_{exc}}{N_{p}}$ increases with p
- $N_{exc} >> N_e$ (> 1 order of magnitude)

-> Light is an additional information which can be useful

 VUV fluctuations are not higher than charge fluctuations

Current and future work

- Initial Panel
- C. Oliveira

Purpose

- VUV emission Energy Diagram Excimers
- Model
- uE geometry Results Validation
- MPGDs
- Model applicatio Results
- Conclusions
- Future Work

- Charging-up is being implemented
- Xe x-sections file was updated recently
 - (writing interface for 23 excitation groups)
- Apply the model to Ar (new file with 44 excitation groups is being interfaced)
- Study the effect of impurities
- Apply to other microstructures (THGEM, THMHSP, Micromegas)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Other properties will be accessed (light position distribution, light signal)
- Gas mixtures (Penning transfers, ...)
- Include \vec{B}
- Use neBEM

Initial Panel

C. Oliveira

Purpose

VUV emission Energy Diagram Excimers

Model

uE geometry Results Validation

MPGDs

Model application Results

Conclusions

Future Work

Thank you!!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Backup 1

Initial Panel

C. Oliveira

Purpose

VUV emission Energy Diagram Excimers

Model

uE geometry Results Validation

MPGDs Model application

Results

Conclusions

Future Work

