PolaPix

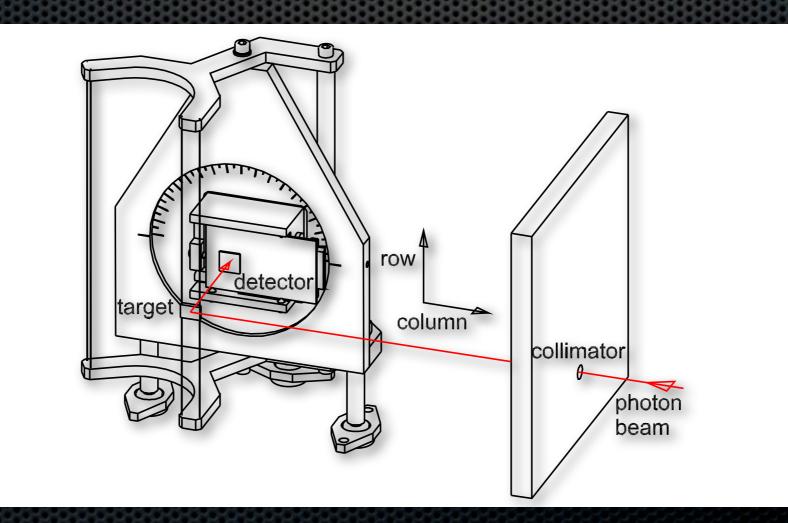
Using a GridPix detector for the 3D detection of polarized X-ray photons

Sjoerd Nauta - Nikhef

Outline

- Introduction
- Motivation
- Experimental setup
- Physics
- Detector design
- Applications
- Summary

Introduction

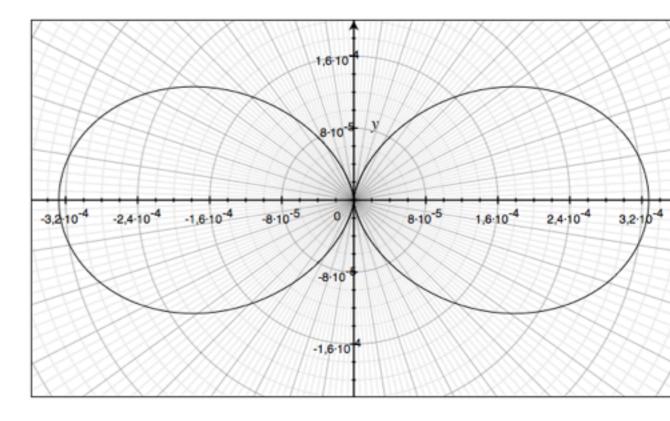

- Request from univ. Erlangen Astroparticle physics group:
 - Is it possible to build a detector for polarized X-rays based on a GridPix detector?
 - Collaboration between univ. Erlangen and Nikhef

Motivation

- Why use a micro-pattern gaseous detector for this application?
 - In theory, 3D imaging of electron clouds is possible!
 - The GridPix system makes it possible to read out the TPC digitally in 3D

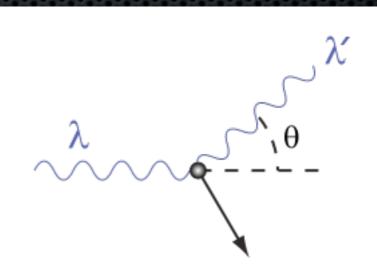
Experimental setup

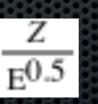
Detector housing built by university of Erlangen


Physics

- Linearly polarized photons
- Energies of photons used: ~10-100 keV
- Two types of interaction are expected:
 - Photoelectric effect
 - Compton scattering

Photoelectric effect


- Photoelectron (anisotropic) Mainly from inner orbitals
- Secondary processes:
 - Secondary X-ray photon
 - Auger electron (isotropic ejection)
 - From outer orbitals
- Proportional with $\frac{Z^4}{E^3}$



Compton scattering

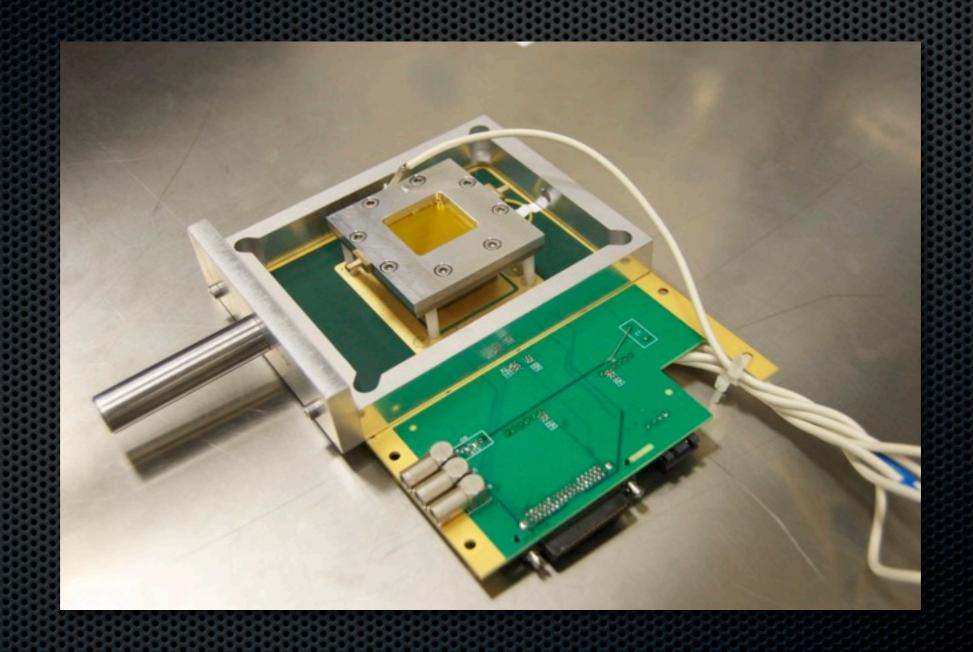
 Photon interacts with (free) electron, changes wavelength

- Outgoing: electron and photon with smaller λ
- Direction of electron and photon also dependent on polarization direction
- Secondary photon interaction: photoelectric or again compton
- Proportional with:

What do we want to measure?

- Tracks of electrons resulting from photoelectric and Compton interactions
- 3D imaging of electron tracks
- Interactions of secondary photons

Detector design


Detector design based on DICE detector design:

- 20 mm driftgap
- TimePix chip (with grid 50 μm above it [pitch 55 μm)
- Guard electrode for uniform E-field

PolaPix:

- X-ray transparent kapton window
- Bottom layer kapton foil conducting (few hundred nm)

Detector design (II)

Detector design (III)

- Gasses to be used:
 - He/iC₄H₁₀
 - Ar/iC_4H_{10}
 - Xe/iC₄H₁₀
 - DME mixtures (DME/CO₂,Xe) (High voltages needed)
 - High Z increases probability for detection

Outlook

- Things that need to be done:
 - Chip testing:
 - Different voltages
 - Different gas mixtures
 - Operation in non-polarized beams (e.g. ⁵⁵Fe)
 - Measurements in polarized beams (in Erlangen)

Applications

- Direction of polarization gives new information about radiation source
- Astrophysical applications:
 - Polarized X-ray radiation from e.g. black holes

Summary

- New detector for 3D detection of polarized X-rays
- Different gas mixtures have to be examined
- Possible application: imaging of astronomical sources
- For more information, consult:
 - T. Michel et al., NIMA **594** (2008) 188-195
 - T. Michel et al., NIMA 603 (2009) 384-392

Thank you for your attention!

20.00