

On-shell Interference Effect of the SM Higgs

Zhen Liu (Fermilab)

HXSWG Offshell Meeting: Off-shell/interference-enabled BSM/EFT studies May. 24th, 2018

$$\begin{split} A_{sig} &= c_{sig} \frac{\hat{s}}{\hat{s} - m^2 + i \; \Gamma m} = c_{sig} \; P(\hat{s}) \\ A_{bkg} &= c_{bkg} \; \text{(slowing varying function of } \hat{s} \text{)} \end{split}$$

$$|A|^{2} = |A_{sig} + A_{bkg}|^{2} = |A_{sig}|^{2} + |A_{bkg}|^{2} + 2Re[A_{sig}A_{bkg}^{*}]$$

= $B.W. + BKG + 2Re[c_{sig}c_{bkg}^{*}]Re[P(\hat{s})] + 2Im[c_{sig}c_{bkg}^{*}]Im[P(\hat{s})]$

$$Re[P(\hat{s})] = \frac{\hat{s}(\hat{s} - m^2)}{(\hat{s} - m^2)^2 + \Gamma^2 m^2}$$
$$Im[P(\hat{s})] = \frac{-i \, \hat{s} \, \Gamma m}{(\hat{s} - m^2)^2 + \Gamma^2 m^2}$$

$$\begin{split} A_{sig} &= c_{sig} \frac{\hat{s}}{\hat{s} - m^2 + i \; \Gamma m} = c_{sig} \; \mathrm{P}(\hat{s}) \\ A_{bkg} &= c_{bkg} \; \text{(slowing varying function of } \hat{s}) \end{split}$$

$$|A|^{2} = |A_{sig} + A_{bkg}|^{2} = |A_{sig}|^{2} + |A_{bkg}|^{2} + 2Re[A_{sig}A_{bkg}^{*}]$$

= $B.W. + BKG + 2Re[c_{sig}c_{bkg}^{*}]Re[P(\hat{s})] + 2Im[c_{sig}c_{bkg}^{*}]Im[P(\hat{s})]$

B.W. Re. Int.

Background real

Re. Int. – Interference from the real part of the propagator

- normal interference, parton level no contribution to the rate, shift the mass peak
- When convoluting with PDF, may generate residual contribution to signal rate;
- conventional wisdom, interference only important when width is large)

$$Re[P(\hat{s})] = rac{\hat{s}(\hat{s} - m^2)}{(\hat{s} - m^2)^2 + \Gamma^2 m^2}$$
 $Im[P(\hat{s})] = rac{\hat{s}(\hat{s} - m^2)^2 + \Gamma^2 m^2}{(\hat{s} - m^2)^2 + \Gamma^2 m^2}$

Interesting example of learning J/Psi spin

$$\begin{split} A_{sig} &= c_{sig} \frac{\hat{s}}{\hat{s} - m^2 + i \; \Gamma m} = c_{sig} \; \mathrm{P}(\hat{s}) \\ A_{bkg} &= c_{bkg} \; \text{(slowing varying function of } \hat{s}) \end{split}$$

$$|A|^{2} = |A_{sig} + A_{bkg}|^{2} = |A_{sig}|^{2} + |A_{bkg}|^{2} + 2Re[A_{sig}A_{bkg}^{*}]$$

= $B.W. + BKG + 2Re[c_{sig}c_{bkg}^{*}]Re[P(\hat{s})] + 2Im[c_{sig}c_{bkg}^{*}]Im[P(\hat{s})]$

Im. Int.— Interference from the imaginary part of propagator

- rare case (at LO);
- changes signal rate;
- cannot be dropped even if the width is narrow*

$$Re[P(\hat{s})] = \frac{\hat{s}(\hat{s} - m^2)}{(\hat{s} - m^2)^2 + \Gamma^2 m^2}$$
$$Im[P(\hat{s})] = \frac{-i \,\hat{s} \,\Gamma m}{(\hat{s} - m^2)^2 + \Gamma^2 m^2}$$

*the measure of interference/resonance do not decrease, as the size of signal amplitude decrease as well

$$\begin{split} A_{sig} &= c_{sig} \frac{\hat{s}}{\hat{s} - m^2 + i \; \Gamma m} = c_{sig} \; P(\hat{s}) \\ A_{bkg} &= c_{bkg} \; \text{(slowing varying function of } \hat{s}) \end{split}$$

$$|A|^{2} = |A_{sig} + A_{bkg}|^{2} = |A_{sig}|^{2} + |A_{bkg}|^{2} + 2Re[A_{sig}A_{bkg}^{*}]$$

$$= B.W. + BKG + 2Re[c_{sig}c_{bkg}^{*}]Re[P(\hat{s})] + 2Im[c_{sig}c_{bkg}^{*}]Im[P(\hat{s})]$$

$$Im[c_{sig}c_{bkg}^*]$$

$$= i|c_{sig}||c_{bkg}^*|sin(\delta_{sig} - \delta_{bkg})$$

When phase $\delta_{sig} - \delta_{bkg}$ is none-zero, this new interference effect exists and cannot be neglected however narrow the resonance is!

Strong phases

- Any ``physical phases'', the relative phase between the two interfering amplitudes would give rise to such special interference effect.
- We've exploited the physical consequences of such phase in many other places:
 - 1. Leptogenesis
 - 2. Hadron physics

Both use strong phase to map out CPV effect

Using the hadron physics terminology:

- Weak phase (=CP phase, phase flip signs under CP)
- Strong phase (phase remains the same under CP; usually comes from loops, e.g., strong dynamics)

$$Im[c_{sig}c_{bkg}^*]$$
= $|c_{sig}||c_{bkg}^*|sin(\delta_{sig} - \delta_{bkg})$

When phase $\delta_{sig} - \delta_{bkg}$ is none-zero, this new interference effect exists and cannot be neglected however narrow the resonance is!

Higgs Interference

Averaging over helicity amplitudes and polar angles, one can calculate this new interference piece between signal and background:

$$Im[c_{sig}c_{bkg}^*]$$
= $|c_{sig}||c_{bkg}^*|sin(\delta_{sig} - \delta_{bkg})$

The interference term from the strong phase does change the SM rate prediction by $\sim -2.\%$

Zhen Liu

Higgs Interference

Averaging over helicity amplitudes and polar angles, one can calculate this new interference piece between signal and background:

$$Im[c_{sig}c_{bkg}^*]$$
= $|c_{sig}||c_{bkg}^*|sin(\delta_{sig} - \delta_{bkg})$

The interference term from the strong phase does change the SM rate prediction by $\sim -2.\%$

	Resolved		
Production	scaling factor		
$\sigma(gg\mathrm{F})$	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$		
$\sigma(VBF)$	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$		
$\sigma(WH)$	κ_W^2 ATLAS and CMS legacy combination paper, JHEP		

- The size of this effect is relevant
- This effect cannot be factorized into production times decay branching fractions, the framework fails to capture this;

8

Higgs Interference

Averaging over helicity amplitudes and polar angles, one can calculate this new interference piece between signal and background:

$$Im[c_{sig}c_{bkg}^*]$$
= $|c_{sig}||c_{bkg}^*|sin(\delta_{sig} - \delta_{bkg})$

The interference term from the strong phase does change the SM rate prediction by $\sim -2.\%$

Zhen Liu

Strong Phase in SM Higgs

A strong phase in the gluon-gluon fusion production at hadron colliders (imaginary part)

Zhen Liu

Phase in gluon-gluonfusion **0**. **042**

- All quark contributions normalized the same way, the plot represents the relative contributions
- Numerically:
 - t-loop +1.034
 - b-loop -0.035 + 0.039i
 - c-loop -0.004 + 0.002i

Phase from interfering background

Interfering background are from SM box diagram of $gg \rightarrow \gamma \gamma$ The overall sizes of different helicity amplitudes are

 $A_{++++} = A_{----}$ dominants, $A_{++--} =$ A_{--++} much smaller Light quark dominants Angular dependence

 \mathbf{z}

Phase from interfering background

Interfering background are from SM box diagram of $gg \rightarrow \gamma \gamma$ There is also a strong phase in the background:

 10^{-1} 10^{-2} Amplitude 10^{-3} - Im[A^{2L}₊₊₊₊] - Im[A^{1L}₊₊₊₊] $Re[A_{++++}^{2L}]$ -- $Re[-A_{++++}^{1L}]$ 10^{-4} $-- \text{Re}[A_{++-}^{1}] -- A_{++-}^{2}$ 0.5 -1.0-0.50.0 1.0 \mathbf{z}

Angular dependence a smaller but negative phase w.r.t to the signal At I-loop, the imaginary part is mainly from $A_{++++} =$ A_{---} with bottom and charm contributions Imaginary part dominated by the 2-loop MHV amplitude.

Phase from interfering background

Interfering background are from SM box diagram of $gg \rightarrow \gamma \gamma$ There is also a strong phase in the background:

Angular dependence a smaller but negative phase w.r.t to the signal At I-loop, the imaginary part is mainly from $A_{++++} =$ A_{---} with bottom and charm contributions Imaginary part dominated by the 2-loop MHV amplitude.

0.0

 \mathbf{z}

0.5

1.0

-1.0

This rate change as a new probe of Higgs total width

$$\sigma(gg \to h \to \gamma\gamma)$$

$$\propto \frac{g_{ggh}^2 g_{\gamma\gamma h}^2}{\Gamma_{tot}} - (\sim 2.\%) g_{ggh} g_{\gamma\gamma h}$$

- Unique piece that does not depend on total width;
- Similar to off-shell ZZ measurement;
- Negligible dependence on coupling at different scales.

HXSWG meeting

This rate change as a new probe of Higgs total width

$$\sigma(gg \to h \to \gamma\gamma)$$

$$\propto \frac{g_{ggh}^2 g_{\gamma\gamma h}^2}{\Gamma_{tot}} - (\sim 2.\%) g_{ggh} g_{\gamma\gamma h}$$

- Unique piece that does not depend on total width;
- Similar to off-shell ZZ measurement;
- Negligible dependence on coupling at different scales.

Suppose the extreme nightmare case of all observed Higgs couplings increase by factor f, and Higgs total width by factor f^4 .

All on-shell cross sections remains the same as SM predictions.

However, the process $gg \rightarrow h \rightarrow \gamma \gamma$ will be altered by

$$-(\sim 2\% \times f^2)$$

This rate change as a new probe of Higgs total width

$$\sigma(gg \to h \to \gamma\gamma)$$

$$\propto \frac{g_{ggh}^2 g_{\gamma\gamma h}^2}{\Gamma_{tot}} - (\sim 2.\%) g_{ggh} g_{\gamma\gamma h}$$

- Unique piece that does not depend on total width;
- Similar to off-shell ZZ measurement;
- Negligible dependence on coupling at different scales.

Suppose the extreme nightmare case of all observed Higgs couplings increase by factor f, and Higgs total width by factor f^4 .

All on-shell cross sections remains the same as SM predictions.

However, the process $gg \rightarrow h \rightarrow \gamma \gamma$ will be altered by

$$-(\sim 2\% \times f^2)$$

Suppose HL-LHC will measure this effect (e.g., the ratio of $\sigma_{\nu\nu}/\sigma_{4l}$) to 4%, it will constraint Higgs total width to ~13 times SM value

5/24/18

Zhen Liu

Kinematic features of the interference effect

Zhen Liu

Angular distribution:

- Interference effects larger in the forward direction, driven by background amplitude kinematics;
- Interference effects ~0.5% at LO
- Interference effects increases to ~2% at NLO, driven by the 2-loop MHV amplitude's large imaginary part
- Fully inclusive cross section has larger B.W. cross section while the interference effect does not increase much, resulting in a smaller relative correction.

Kinematic features of the interference effect

	$-\sigma_{ m int}/\sigma_{ m BW}~(\%)$		
$ \cos \theta $	no cuts	p_T^h veto	$\gamma\gamma$ cuts+veto
0.0-0.2	$0.87^{+0.34}_{-0.20}$	$1.28^{+0.62}_{-0.32}$	$1.34^{+0.68}_{-0.34}$
0.2-0.4	$0.91^{+0.36}_{-0.21}$	$1.35^{+0.65}_{-0.34}$	$1.41^{+0.72}_{-0.36}$
0.4-0.6	$1.04^{+0.41}_{-0.24}$	$1.53^{+0.74}_{-0.38}$	$1.62^{+0.83}_{-0.42}$
0.6-0.8	$1.37^{+0.53}_{-0.31}$	$1.99^{+0.96}_{-0.50}$	$1.65^{+0.75}_{-0.40}$
0.8-1.0	$3.55^{+1.45}_{-0.82}$	$4.85^{+2.37}_{-1.23}$	_
0.0-1.0	$1.52^{+0.60}_{-0.35}$	$2.20^{+1.06}_{-0.55}$	$1.48^{+0.73}_{-0.38}$

Differential distributions help map out the interference effect, and further the width information!

Kinematic features of the interference effect

Summary and outlook

We choose the $gg \to h \to \gamma\gamma$ as one example and found the inclusion of this strong phase reduce the signal rate by ~2.% (at NLO, need higher order calculation); an important ingredient should be included in all LHC Higgs precision programs (global fit, etc.).

This effect could be used as probes to BSM physics, providing information on

- Higgs light quark Yukawas
- Higgs total width
- **CPV** effect

There are interesting kinematical distributions for the process can be utilized to map out the interference effect.

HXSWG meeting

This rate change as a new probe of Higgs total width

$$\sigma(gg \to h \to \gamma\gamma)$$

$$\propto \frac{g_{ggh}^2 g_{\gamma\gamma h}^2}{\Gamma_{tot}} - (\sim 2.\%) g_{ggh} g_{\gamma\gamma h}$$

- Unique piece that does not depend on total width;
- Similar to off-shell ZZ measurement;
- Negligible dependence on coupling at different scales.

However, the process $gg \to h \to \gamma \gamma$ will be altered by

$$-(\sim 2\% \times f^2)$$

Suppose HL-LHC will measure this effect (e.g., the ratio of $\sigma_{\gamma\gamma}/\sigma_{4l}$) to 4%, it will constraint Higgs total width to ~13 times SM value;

The FCC-hh will increase the precision by at least one order of magnitude, yielding a $3-\sigma$ measurement of the interference effect and bounding the Higgs width

$$0.5 < \Gamma/\Gamma_{SM} < 1.6$$

