Effective Theories for Interpretation of LHC Data: Part II

Natalia Toro

Harvard University

In collaboration with:

Nima Arkani-Hamed, Bruce Knuteson, Steve Mrenna, Liantao Wang

Philip Schuster, Jesse Thaler,

Matthew Baumgart, Liam Fitzpatrick, Jared Kaplan, Tom Hartman,

and the LHCO community

Last week...

Philip talked about OSETs — descriptions of new physics scenarios in terms of the produced particles and their decay modes rather than full QFT. OSETs capture most physics observable at early stages, little excess weight

- An alternative class of benchmark scenario?
- An *evolving* benchmark?

How could this evolution work?

Outline

- Overview of MARMOSET—the unit step in OSET evolution
- Starting point for interpretation: discoveries have been made!
- Mass scale estimation and fitting.
- Process characterization and rate fitting
- Resolving overlapping processes
- OSET \rightarrow theory guess \rightarrow motivated searches

Examples from LHC Olympics — hundreds of fb⁻¹ of experience in tens of models

MARMOSET in practice

An Example: ABOX

- SUSY model inspired by LHC Olympics Black Box C
- 4 fb^{-1} generated in pythia + backgrounds
- Background treatment is not fully realistic
- Simulated with PGS 3, as modified by Steve Mrenna, with triggers added by Harvard group
- Tools are in beta version, incorporate only primitive fitting...

Low Mass: $\geq 3\ell, < 2j$

 $peak \sim 600 \text{ GeV}$

Mid-mass: 2 – 3*j*

 $peak \sim 800 \text{ GeV}$

High Mass: 5 + j

 $peak \sim 1800 \text{ GeV}$

Three Classes of Event

minv_{all} in I>=3, b=any,j>=6

met in I>=3, b=any,j>=6

Counting

$\sum p_T$		ℓ '	VS.	j				bν	/S. j	j		
< 700	$ \begin{pmatrix} * & j=0\\ l=0 & 0_1, \\ l=1 & 0_1, \\ l=2 & 0_1, \\ l=3 & 49_1\\ l=4 & 41_7\\ l=5 & 20_5\\ l=6 & 2_2, \\ \end{pmatrix} $	$j = 2$ 0_{1} 0_{1} 0_{1} 0_{1} 57_{13} 40_{8} 6_{4} 0_{1}	j=4 01. 01. 47140 . 2510. 94. 01. 01.	j=6 01. 8103 0. 1158 . 84. 01. 01. 01.	j=8 01. . 374. . 319. 01. 01. 01. 01. 01.	(* b=0 b=1 b=2 b=3 b=4 b=5	j=0 110 ₂₀ 2 ₃ 0 ₁ 0 ₁ 0 ₁	j=2 82 ₁₅ 15 ₇ 6 ₄ 0 ₁ 0 ₁ 0 ₁	j=4 48 ₉₀ 24 ₄₁ 9 ₂₁ . 0 ₁ . 0 ₁ . 0 ₁ .	j=6 . 12 ₃₅ . 14 ₇₈ 1 ₄₂ . 0 ₁₀ . 0 ₁ .	j=8 444. 129. 117. 04. 01. 01.	
< 700 700 - 1400	$ \begin{pmatrix} 1 = 7 & 0_1, \\ * & j = 0 \\ 1 = 0 & 0_1, \\ 1 = 1 & 0_1, \\ 1 = 2 & 0_1, \\ 1 = 3 & 18_5, \\ 1 = 4 & 25_5, \\ 1 = 5 & 17_4, \\ 1 = 6 & 12_4, \\ 1 = 7 & 0_1, \\ \end{pmatrix} $	0 ₁ . j=2 0 ₁ . 0 ₁ . 0 ₁ . 87 ₁₇ . 53 ₁₂ . 28 ₉ . 6 ₄ . 0 ₁ .	0 ₁ . j=4 0 ₁ . 169 ₅₈ . 143 ₂₂ . 60 ₁₃ . 12 ₆ . 1 ₁ . 0 ₁ .	0 ₁ . j=6 0 ₁ . 77 ₉₃ . 174 ₄₃ . 100 ₁₈ . 25 ₁₀ . 1 ₁ . 0 ₁ .	0 ₁ . j=8 0 ₁ . 79 ₉₀ . 86 ₂₇ . 33 ₁₁ . 11 ₆ . 0 ₁ . 0 ₁ . 0 ₁ .	$\begin{pmatrix} * \\ b=0 \\ b=1 \\ b=2 \\ b=3 \\ b=4 \\ b=5 \\ b=6 \end{pmatrix}$	<pre>j=0 71₁₇. 1 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0</pre>	0 ₁ . j=2 109 ₁₉ . 41 ₁₂ . 23 ₉ . 1 ₁ . 0 ₁ . 0 ₁ . 0 ₁ .	<pre>j=4 170₄₇. 156₃₃. 56₁₉. 3₂. 0₁. 0₁. 0₁.</pre>	<pre>j=6 10026. 18576. 7445. 1615. 23. 01. 01.</pre>	j=8 5846. 7242. 5129. 2313. 54. 01. 01.)
> 1400	$ \begin{pmatrix} * & j=0\\ 1=0 & 0_1.\\ 1=1 & 0_1.\\ 1=2 & 0_1.\\ 1=3 & 0_1.\\ 1=4 & 2_2.\\ 1=5 & 0_1.\\ 1=6 & 0_1.\\ 1=7 & 0_1 \end{pmatrix} $) j=2 0 ₁ . 0 ₁ . 0 ₁ . 14 ₆ . 5 ₃ . 1 ₁ . 0 ₁ . 0 ₁ .	j=4 0 ₁ . 24 ₁₄ . 24 ₈ . 14 ₈ . 2 ₂ . 2 ₂ . 0 ₁	j=6 0 ₁ . 69 ₃₀ . 81 ₂₀ . 63 ₁₇ . 27 ₁₁ . 9 ₆ . 1 ₁ . 0 ₁	j=8 0 ₁ . 171 ₄₁ . 157 ₂₉ . 82 ₁₉ . 25 ₁₁ . 3 ₃ . 0 ₁ . 0 ₁	(* b=0 b=1 b=2 b=3 b=4 b=5 b=6	j=0 22. 01. 01. 01. 01. 01. 01. 01.	<pre>j=2 116. 43. 52. 01. 01. 01. 01. 01.</pre>	j=4 21 _{11.} 30 _{13.} 13 _{8.} 1 _{1.} 1 _{1.} 0 _{1.} 0 ₁	j=6 39 ₁₄ . 99 ₃₁ . 68 ₂₃ . 37 ₁₂ . 6 ₄ . 1 ₁ . 0 ₁	j=8 75 ₂₁ . 130 ₂₇ . 136 ₂₆ . 77 ₁₈ . 14 ₇ . 6 ₄ . 0 ₁	

Starting points

- lepton-rich and b-rich
- 3 distinct scales in M_{eff} : ~ 1800, 800, 600 GeV
- No new resonances visible → assume new physics pair production
- Producing new particles with mass \sim 1 TeV (had), 500 GeV (had), 400 GeV (em)?
- More jets in high-M_{eff} peak—decays through second particle?

strong ~950 GeV

Resolving masses: case study I

Changing the \tilde{t} mass: meff in all inclusive

Resolving masses: case study II

GeV

Changing all masses together \tilde{t} :

met in all inclusive

Characterizing new physics

- OSETs simply capture *almost* all the observable physics, little excess
- Motivate guesses/benchmarks by where new physics is discovered, refine by comparison of MC to data

A starting guess

The gluino/stop decays often produce 4 leptons. The few 6ℓ events come from leptonically decaying tops? To ignore possible direct EW production, demand ≥ 4 jets

d d

# New Particles									
GL : charge=0 color=8 mass=990									
Stop Stop~ : charge=2 color=3 mass=560									
Sbot Sbot~ : charge=-1 color=3 mass=580									
NA : charge=0 color=0 mass=240									
CA CA~ : charge=-3 color=0 mass=390									
MPT : charge=0 color=0 mass=100 pdg=1000022									
GL > Stop tbar									
GL > Sbot bbar									
Stop > NA t									
Stop > CA~ b									
Sbot > NA b									
Sbot > CA t									
NA > e- mu+ MPT # (2-lepton)									
@ (e- mu+ nu_tau e- e+ nu_tau)									

@ (e- mu+ nu_tau | e- e+ nu_tau)
CA > MPT e- nu_e # (1-lepton)
@ (e- nu_e | mu- nu_e)

> GL GL : name=GLprod matrix=2

Starting guess: problems

Fit pushes Sbot > NA b to boundary of physical region—need to produce b in

conjunction with more leptons...

####	##Chai	nnel#	##:	#########	######	Target	Fit	Error	Pull	+***	***+
1=2	b=1	j=4	(700 <pt<< td=""><td>1400)</td><td>69.0</td><td>111.1</td><td>19.6</td><td>2.1</td><td></td><td>**</td></pt<<>	1400)	69.0	111.1	19.6	2.1		**
1=2	b=2	j=4	(700 <pt<< td=""><td>1400)</td><td>25.0</td><td>45.4</td><td>11.1</td><td>1.8</td><td></td><td>**</td></pt<<>	1400)	25.0	45.4	11.1	1.8		**
1=3	b=2	j=6	(700 <pt<< td=""><td>1400)</td><td>14.0</td><td>22.4</td><td>5.2</td><td>1.6</td><td></td><td>**</td></pt<<>	1400)	14.0	22.4	5.2	1.6		**
1=2	b=1	j=8+	(700 <pt<< td=""><td>1400)</td><td>28.0</td><td>41.7</td><td>8.8</td><td>1.6</td><td></td><td>**</td></pt<<>	1400)	28.0	41.7	8.8	1.6		**
1=1	b=2	j=8+	(1400 <pt<< td=""><td>10000)</td><td>49.0</td><td>66.5</td><td>10.8</td><td>1.6</td><td></td><td>**</td></pt<<>	10000)	49.0	66.5	10.8	1.6		**
1=3	b=0	j=6	(0 <pt<< td=""><td>700)</td><td>5.0</td><td>0.7</td><td>2.6</td><td>-1.6</td><td>* *</td><td></td></pt<<>	700)	5.0	0.7	2.6	-1.6	* *	
1=3	b=0	j=4	(1400 <pt<< td=""><td>10000)</td><td>10.0</td><td>4.2</td><td>3.6</td><td>-1.6</td><td>* *</td><td></td></pt<<>	10000)	10.0	4.2	3.6	-1.6	* *	
1=4	b=0	j=4	(1400 <pt<< td=""><td>10000)</td><td>7.0</td><td>1.9</td><td>3.1</td><td>-1.7</td><td>* *</td><td></td></pt<<>	10000)	7.0	1.9	3.1	-1.7	* *	
1=4	b=1	j=8+	(1400 <pt<< td=""><td>10000)</td><td>7.0</td><td>1.5</td><td>3.0</td><td>-1.8</td><td>* *</td><td></td></pt<<>	10000)	7.0	1.5	3.0	-1.8	* *	
1=4	b=3	j=8+	(1400 <pt<< td=""><td>10000)</td><td>7.0</td><td>0.7</td><td>3.0</td><td>-2.1</td><td>* *</td><td></td></pt<<>	10000)	7.0	0.7	3.0	-2.1	* *	
1=3	b=0	j=4	(0 <pt<< td=""><td>700)</td><td>17.0</td><td>6.8</td><td>4.9</td><td>-2.1</td><td>* *</td><td></td></pt<<>	700)	17.0	6.8	4.9	-2.1	* *	
1=3	b=0	j=4	(700 <pt<< td=""><td>1400)</td><td>63.0</td><td>41.8</td><td>9.6</td><td>-2.2</td><td>* *</td><td></td></pt<<>	1400)	63.0	41.8	9.6	-2.2	* *	
1=4	b=0	j=4	(0 <pt<< td=""><td>700)</td><td>7.0</td><td>0.2</td><td>2.9</td><td>-2.3</td><td>* *</td><td></td></pt<<>	700)	7.0	0.2	2.9	-2.3	* *	
1=4	b=1	j=4	(700 <pt<< td=""><td>1400)</td><td>27.0</td><td>10.2</td><td>5.8</td><td>-2.9</td><td>* * *</td><td></td></pt<<>	1400)	27.0	10.2	5.8	-2.9	* * *	
1=4	b=0	j=4	(700 <pt<< td=""><td>1400)</td><td>26.0</td><td>9.1</td><td>5.7</td><td>-3.0</td><td>* * *</td><td></td></pt<<>	1400)	26.0	9.1	5.7	-3.0	* * *	
1=3	b=2	j=8+	(1400 <pt<< td=""><td>10000)</td><td>34.0</td><td>14.6</td><td>6.4</td><td>-3.0</td><td>* * *</td><td></td></pt<<>	10000)	34.0	14.6	6.4	-3.0	* * *	

More Leptons

We need to add a $b + 3\ell$ decay mode!

New Particles

More Leptons

Param	Low	BestFit	High	Name
total	0.2769	0.2839	0.2909	Sum Sigma
s0	0.3043	0.3260	0.3477	Sigma(g g > GL GL : name=GLprod matrix=2)
sl	0.5772	0.6167	0.6561	Sigma(g g > Stop Stop~ : name=Stopprod matrix=2)
s2	0.0283	0.0573	0.0864	Sigma(g g > Sbot Sbot~ : name=Stopprod matrix=2)
b0_0	0.6951	0.8047	0.9144	Br(GL > tbar Stop)
b0_1	0.0856	0.1953	0.3049	Br(GL > bbar Sbot)
b1_0	0.9099	0.9367	0.9634	Br(Stop > NA t)
b1_1	0.0366	0.0633	0.0901	Br(Stop > CA^{\sim} b)
b2_0	0.0000	0.0002	0.2552	Br(Sbot > NA b)
b2_1	0.7448	0.9998	1.0000	Br(Sbot > CA t)
b3_0	1.0000	1.0000	1.0000	Br(NA > mu+ e- MPT)
b4_0	0.7983	0.9998	1.0000	Br(CA > mu- e- e+ MPT)
b4_1	0.0000	0.0002	0.2017	Br(CA > nu_e e- MPT)

...indeed, vastly favored over 1ℓ channel...

Alternatives...

We can check variants:

- interchange \tilde{g} , \tilde{t} —one extra hard parton on each decay
- Additional 1st/2nd generation squark channel
- Non-SUSY-like decays

Exhaustive list of reasonable guesses?

Challenges

- Exhaustive search
- Fast sim. not good enough?
- Reliability of BR fits?
 - Mass offsets → trigger efficiency offset!
 Compromises fit

Theory and three leptons

...trilepton decays are quite striking! Tempting to assume intermediate NA!

Distinguishable? not sure... Take cascade option seriously for now, but should look for evidence!

Resolving multiple processes

- How do we resolve overlapping new physics
- Requires a model of the process!
- An ambiguous example and a more solid one
- How to do this conservatively?
- Exhaustive searching
- When do you stop?

Something we missed

####	##Char	nnel#‡	###	#########	####	Target	Fit	Error	Pull	+****	* * * * * +
1=3	b=1	j=8+	(700 <pt<< td=""><td>1400)</td><td>9.0</td><td>17.2</td><td>3.9</td><td>2.1</td><td> </td><td>* *</td></pt<<>	1400)	9.0	17.2	3.9	2.1		* *
1=2	b=4+	j=6	(1400 <pt<< td=""><td>10000)</td><td>0.0</td><td>2.8</td><td>1.3</td><td>2.1</td><td> </td><td>* *</td></pt<<>	10000)	0.0	2.8	1.3	2.1		* *
1=3	b=4+	j=8+	(1400 <pt<< td=""><td>10000)</td><td>1.0</td><td>4.0</td><td>1.7</td><td>1.7</td><td> </td><td>* *</td></pt<<>	10000)	1.0	4.0	1.7	1.7		* *
1=4	b=0	j=6	(1400 <pt<< td=""><td>10000)</td><td>8.0</td><td>3.2</td><td>3.1</td><td>-1.5</td><td>**</td><td></td></pt<<>	10000)	8.0	3.2	3.1	-1.5	**	
1=4	b=0	j=4	(0 <pt<< td=""><td>700)</td><td>7.0</td><td>2.0</td><td>3.0</td><td>-1.7</td><td>**</td><td></td></pt<<>	700)	7.0	2.0	3.0	-1.7	**	
1=4	b=0	j=4	(1400 <pt<< td=""><td>10000)</td><td>7.0</td><td>1.5</td><td>2.9</td><td>-1.9</td><td>**</td><td></td></pt<<>	10000)	7.0	1.5	2.9	-1.9	**	
l=4	b=0	j=4	(700 <pt<< td=""><td>1400)</td><td>26.0</td><td>15.5</td><td>5.6</td><td>-1.9</td><td>**</td><td></td></pt<<>	1400)	26.0	15.5	5.6	-1.9	**	

Need more light-flavor jets, but too few to be squarks...

This is Higgsino production, but not 5σ discovery because other channels give background!

A bigger omission!

Unmask low jet counts: Leaving out EW production \rightarrow very bad fit tells us where new physics is left out!

####	#####	CHANNE	CL##########	TARGET	FIT	ERR	PULL	
l=4	b=0	j=0	(pT < 700)	41.0	0.7	6.6	-6.1	+****
1=3	b=0	j=0	(pT < 700)	48.0	0.4	8.1	-5.9	+****
1=3	b=0	j=2	(700 - 1400)	54.0	17.0	7.8	-4.7	* * * * *
l=4	b=0	j=2	(pT < 700)	34.0	6.4	6.0	-4.6	* * * * *
l=4	b=0	j=0	(700 - 1400)	25.0	1.6	5.2	-4.5	* * * *
1=3	b=0	j=2	(pT < 700)	44.0	12.4	7.5	-4.2	* * * *
1=5	b=0	j=0	(pt < 700)	19.0	0.3	4.5	-4.2	* * * *
1=5	b=0	j=0	(700 - 1400)	17.0	0.3	4.3	-3.9	* * * *
l=4	b=0	j=2	(700 - 1400)	33.0	10.5	6.0	-3.8	* * * *
1=3	b=0	j=0	(700 - 1400)	17.0	1.8	4.3	-3.5	* * * *
l=6	b=0	j=0	(700 - 1400)	12.0	0.1	3.6	-3.3	* * *
1=5	b=0	j=2	(700 - 1400)	19.0	4.5	4.5	-3.2	* * *
1=3	b=0	j=4	(700 - 1400)	63.0	48.5	8.8	-1.6	* *
1=3	b=0	j=6	(pt < 700)	5.0	1.3	2.5	-1.5	*

EW Production

Model agreement requires production of the electroweak intermediate states we introduced. ($\sum p_T < 700$ does a good job isolating this component from other processes in OSET)

Also requires production of a new state with 4ℓ decay mode. Useful to have found, but nowhere near gold-plated

where are all these leptons coming from? Why don't decays go through jets? Motivates extra on-shell leptonic states

where are all these leptons coming from? Why don't decays go through jets? Motivates extra on-shell leptonic states— look for edges and endpoints!

Summary

- Pre-chosen OSET is an interesting alternative class of benchmarks
- Evolving OSET encapsulate structure of new physics as early as possible
- An invariant characterization of data that is accessible to people outside the experiment
- Facilitates model development, which in turn can motivate further new physics searches and direct search for kinematic features