TISD & RILIS activities during LS2 Sebastian ROTHE For EN-STI-RBS/LP # **Target Materials** | What | Why | How | Where | Who | |--|---|--|-----------------------------|----------------------| | Ensure non-actinide nano material production | faster release/higher yields | Derogation / Collaboration / Initiate non-actinide nano lab at CERN | Offline chemical lab /?/? | JPR | | Optimize target heating | Reproducibility Uniformity of temperature | Collaboration w. SPES | Offline
Pump stand | DOCT1 / FELL1 | | Investigate UCx sintering | Optimize Release | Sequential thermal
treatment +
characterization / on-
line sintering at
synchrotron beam
line | Class A + MME labs
/ tbd | JPR,srr | | Investigate Material
Pre-treatment | Avoid contamination | Chemical reactions (etching etc) | Chemical lab
Offline | Srr, Collaborations? | | Study Molecular beam chemistry | Volatilization and/or Purification | Develop dedicated setup | Offline /ext. | JB
Collaborations | | Optimize UCx production | Reproducibility | More observables during production | Class A | srr | | Investigate ThCx | Higher yields in specific regions | FLUKA, reactivating procedures | Class A | BC,JPR | # **Target Materials** | What | Why | How | Where | Who | |-------------------------|--|--|------------------|---------------------------| | Neutron converter (s) | High Purity
High Production | Design iteration | ISOLDE | JPR, coll. With TRIUMF | | Mass marker development | More control,
Avoid cold spots | Simulation, Iterative testing | Pump stand + RGA | DL, FELL
Collaboration | | Autopsy of used targets | Learn from failure, improve future designs | List of priorities,
Open targets in hot
cell | ISOLDE Hot cell | PGH | #### Ion sources | What | Why | How | Where | Who | |---------------------------|--|--|-------------------|-----------------| | VADLIS 2.0 | Improve RILIS mode
Validate reliability | Simulations Design iterations Testing | Offline | DL, ISBM | | COLD VD7 | CO beams, fragile molecules | review design (from PS), construct, test | Offline | DOCT2, FELL2 | | Ion source simulation | Starting point for optimization | VSIM
Collaboration | in silico | DL, FELL
SCK | | TOFLIS | Beam purity | High ohmic cavity Drift region Fast beam gating Integrate LIST | Offline
ISOLDE | SW, Fell1, ISBM | | 2 Photon laser ionization | Resolution for in source spectroscopy isomer selectivity Accessibility to other elements | Mirror in ion source
PI-LIST | offline | KC, RH | | Negative ion source | Yield, purity
Rectify design | Simulation, testing. Develop new low work-function materials | offline | DL, FELL | #### Ion sources | What | Why | How | Where | Who | |---------------------------------|---|--|---------------------------|---------------| | Integrated yields + stress test | Optimize lifetime + efficiency | Long-time performance tests, destructive tests | New ion source test stand | DL, FBP, FELL | | RILIS General R&D | Increased range of accessible elements, isomer selectivity, reliability | Spectral range Laser and lab infrastructure, Bandwidth optimization, ion source developments | RILIS,
Offline | RILIS & ISBM | Dedicated session in next GUI ## Infrastructure | What | Why | How | Where | Who | |---------------------------------------|---|--|---------------------------------|--------------------------| | Improve VADIS gas distribution system | Measure pressure
Ensure purity | Add gas loop, recirculation pump & filters | OFFLINE, then ISOLDE | JB, FELL | | Upgrade beam gate switches | No spares.
No high frequency
possible | Test fast BG during
2018 at GPS
Specify product with
manufacturer | OFFLINE,
ISOLDE | SW, srr
ISBM | | Build second pump stand | Dedicated ion source
test stand
Lifetime tests +
integrated yield
measurements | Copy of existing Pump stand | LARIS, then OFFLINE | DL, BC | | Intensify use of RGA | Monitor Target and ion source behavior already during heating process | Survey, then purchase . | Offline, Pumpstands,
Class A | Srr, LV support | | Improving YIELD database | Link to target documentation Add yield prediction Add user interface Add interface to CRIBE | Test during 2018, collect feature requests | CERN | JB, FELL2, srr,
Users | ## Infrastructure | What | Why | How | Where | Who | |---|--|--|----------------------|--| | Improve target documentation | Spread of information -> Single entry document required. Track target location, link to control system | EDMS, infor,
Link databases | ISOLDE | srr, BE-OP, Target
production, RP, Users,
LV support | | Upgrade Isolde
Timing System | Not very user friendly | Review specification | ISOLDE | TG | | Lasers at OFFLINE 2 and MEDICIS | RILIS is most efficient and selective ion source. | Install full laser systems | Offline 2
Medicis | RILIS, KU
LEUVEN/PROMED,
Umz, | | RILIS control system upgrade | Current system not easy to maintain by LV support | Employ (shared) PJAS Refactoring of RILIS control software | RILIS | BM, PJAS @ LV support | | Development of unified controls system for Offline machines | Synergies, Still features missing Improve stability More automation | Employ (shared) PJAS Dedicated development time at offline machines. | OFFLINE | srr, PJAS@LV Support | | Improve target health monitoring | Enable preventive actions | Link production rates from experiments permanent yield checks set up display for target health | OFFLINE,
ISOLDE | srr, Users, BE-OP, LV support | Thanks to the TISD and RILIS teams.