

Radioactive ion beam R&D with SPIRAL 1

P. Delahaye for the SPIRAL 1 Upgrade team SGUI meeting, ISOLDE 3rd of May 2018

SPIRAL upgrade in a nutshell

Extending the number of elements produced by the ISOL method at SPIRAL

1+ ionisation: VADIS from ISOLDE

Hot target

➤1+ beams from metallic elements with T_{fusion} <2000°C

Conversion from 1+ to n+: Phoenix booster

➤ Almost chemistry independent, charge breeding times from 10 to ~200ms

FEBIAD source

1+ beams from metallic elements with T_{fusion} <2000°C

2011 -2013 - Different tests at SIRA and SPIRAL 1

Coupling of the SPIRAL 1 targets with the VADIS

Dilatation problems are fixed

➤ Ion source sliding against its axis

➤ oven attached to container

Record temperature of 2400°C attained

O. Bajeat et al, NIM B 317(2013)411

Dec. 2013: tests at nominal power at SPIRAL 1

P. Chauveau et al, NIM B 376(2016)35

1+ beam intensities (pps)

Day 1 beams from FEBIAD TIS test results with ³⁶Ar@95AMeV at nominal power at SPIRAL 1

Already 7 new elements
Na, Mg, Al, P, Cl, Cu, Fe
+ many more to come

2014- 2015: reliability tests

- Failing BeO insulators exchanged
- High voltage discharges at extraction fixed

More than 3 weeks running with stable efficiencies

FEBIAD source - status - April

2 ion target ion sources

• 2 conditioned on the SPIRAL 1 test bench

Ionisation efficiency measurements

Ref: L. Penescu et al, Rev. Sci. Instrum. 81, *P. Chauveau et al, NIM B* 376, S. Essabaa et al NIM A 317

Using a calibrated leak with gas injection: $\eta = 11 + / \log z$

Energy profile measurement

Simulations: M. Herbane, LPC Caen

Intensity increase to be confirmed on long term

Charge breeding efficiency depends on $\delta\! E$

Yield estimates use conservative efficiencies

 $\sigma_{\rm F}^{\sim}1.5{\rm eV}$

FEBIAD source - status - May

2 ion target ion sources

- •1 failed during the beginning of the experiment!
 - Anode in shortcut, BN insulators were incriminated
- •1 broken on test bench, reconditionned and modified, now online
 - Rapid modifications to cool and protect new BeO insulators
 - First tests show that the ionisation is ok, but slow release probably due to a too low primary beam power on target
 - Next test beamtime with ³⁶Ar at nominal power on the 10th-11th of May

Goals:

- Reproducing the beam intensities obtained in 2013
- Preparing the MUGAST campaign: ²⁸Mg, ²⁵Al, ³⁰P
- First charge breeding of radioactive isotopes: ³⁷K+→ ³⁷K^{x+}

Radioactive ion beam commissioning

2018 - run 1

Accepted experiments:

• Resonant proton elastic scattering on 17F and 2-proton emission from excited states in 18Ne, G. F. Grinyer et al (E750)

17F was observed as BeF molecule with dissociating BeO insulator F atomic beams in principle well produced with FEBIAD sources

Target and ion source failure due to a shortcut of the anode

ragmentation using

the FEBIAD, directly followed by the experiment

• Direct isospin mixing measurement in Coulomb excitation of an ^{38m}K isomeric beam from SPIRAL1, G.De France et al (E737)

^{38m}K from ⁵⁸Ni fragmentation ok but not from transfer reaction with ³⁶Ar Population of the isomeric state depends on the reaction mechanism!

Testing ^{38m}K from ⁴⁰Ca fragmentation

R&D for future beams - Beamlab activities:

- Priorities from GANISOL review 2016/7/4
- -Preparing the MUGAST campaign 2019/2020
- From ⁴⁰Ca fragmentation: test of production of ²⁵Al and ³⁰P (Lol De Séréville et al)
- Tell Recovering with tests: yields from 40Ca and 36Ar fragmentation
 - •Stripping to get rid of ⁵⁶Co and ⁵⁶Fe

Organisation of the target and ion source R&D

Different developments

- Testing production with new primary beam on C target
- New Target or ... new ion source

	Delay	Number	GPI HR (supply,
	(Month)	of TISS	assembling, test) MM
Already exists	12	1	4
To be tested	18	1	6
To be improved and tested	24	1 to 2	12
To be designed and tested	36	1 to >2	12 + 36 (PhD student)
Difficult			

Ressources for 1 TISS			
Cost	25->50k€		
Design	4 MM		
Quotation	1 MM		
Safety evaluation	1 MM		

Evaluation in

GANISOL
ISOL beams for GANIL

reviews after each PAC meeting

Direction + TISS developpers + 4 external physicists (T. Stora, M. Assié, B. Blank, N. Orr)

List of priorities - from Review 2016/07

Test of new beams with C targets

- 1) ³⁰P and ²⁵Al from ³⁶Ar fragmentation 2018
- 2) ⁵⁶Ni, ⁴⁸Cr from fragmentation of ⁵⁸Ni. For ⁵⁶Ni: ⁵⁶Co contamination to evaluate. 2019?
- 3) Beams (79 Se, 60 Fe, 67 As) from 86 Kr fragmentation. 2019 / 2020?

Development of new targets

All science driven (LoIs)

- 1) Nb for production of high intensities for beams with 30<Z<40
- 1) ex aequo Fusion evaporation targets (N=Z nuclei)

Beyond commissioning...

10²

From day 1 beams...

1+ beam intensities (pps)

New targets:

Fragmentation targets

- Nb target design is ongoing
- •Others under study (SiC, Al2O3, CaO...)

Fusion evaporation targets

thin Ni target (PhD thesis V. Kuchi)

1+ beam intensities (pps)

Collaborations within EURISOL/Beamlab within ENSAR2

Fusion evaporation targets

List of priorities from the GANISOL review 2016, July 4th

Ongoing developments To be tested at SPIRAL at the earliest in 2020

Fusion evaporation target ion source development

• neutron deficient isotopes such as ⁷⁴Rb, ¹¹⁴Cs, N=Z for DESIR

Offline test 2017-2018

Ionisation efficiency and rapidity measurement

Online test at ALTO earliest 2019
Online test at SPIRAL earliest 2020

1+ beam intensities (pps)

ECS fusion evaporation V. Kuchi, P. Jardin

Interest to test SnS formation at ALTO within Beamlab

Collaboration with IPN Orsay – first test possible in 2019 with the Tandem

Fusion evaporation targets

List of priorities from the GANISOL review 2016, July 4th

Ongoing developments

To be tested at SPIRAL at the earliest in 2020

Fusion evaporation target ion source development

• neutron deficient isotopes such as ⁷⁴Rb, ¹¹⁴Cs, N=Z for DESIR

Offline test 2017-2018

Ionisation efficiency and rapidity measurement

Online test at ALTO earliest 2019
Online test at SPIRAL earliest 2020

Ongoing measurement of emissivity of target foils

Test setupMeasurement of emissivity
with a 2 wavelength pyrometer

ANR 'TULIP' (Target Ion Source for Short-Lived Ion Production) has been submitted

Collaboration with IPN Orsay – first test possible in 2019 with the Tandem

SPIRAL upgrade team

- O. Bajeat
- M. Babo
- P. Chauveau (now CSNSM)
- C. Couratin (now IKS leuven)
- M. Dubois (chef de projet)
- P. Delahaye (resp. scientifique)
- M. Fadil
- R. Frigot
- S. Hormigos
- P. Jardin
- P. Lecomte
- N. Lecesne
- L. Maunoury
- B. Osmond
- V. Toivanen (postdoc)
- E. Traykov (now IPHC)
- J. C. Thomas

- T. Stora
- C. Seiffert
- F. Wenander
- L. Penescu

- E. Lienard
- G. Ban
- X. Fléchard
- D. Durand

- J. Angot
- T. Lamy

R. Vondrasek

Acknowledgements to

Phoenix ECR charge breeder

Former ISOLDE ECR charge breeder

➤ Upgraded with new Al plasma chamber, UHV vacuum, 2 RF ports and gas injection, injection triplet, mobile injection and puller electrodes

With contributions from

> Tested at LPSC in summer 2015

High efficiencies with stable beams Rare gases and alkalis

L. Maunoury et al, Rev Sci Instrum. 87(2016)02B508

