

Options for Joint Developments

TRIUMF - CERN

Alexander Gottberg GUI May 03, 2018

Areas of collaborations as defined by P095/A2:

- Operational experience
- Target material synthesis and development
- Ion source and transfer line development
- Target station infrastructure
- Remote handling
- Proton-to-neutron converter and online beamtime
- Ion optical extraction system
- Hermetic target vessel (vacuum feedthroughs, sealing technology, target oven, heat shields, ...)
- Heavy-ion SRF technology (cryomodules, ancillaries, operation and beam diagnostics)

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE (CERN) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

P095/A2

Addendum No. 2

to

THE 2009 PROTOCOL P095

to

THE 1996 CO-OPERATION AGREEMENT

between

TRIUMF (CANADA)

and

THE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

Concerning

Collaboration on TRIUMF's Rare Isotope Beams in target and ion source development, high-resolution mass separation, superconducting RF cavities, nuclear engineering and beam instrumentation

Proposals – Overview

Target Materials

- Nano-fibrous target materials *
- UC_x ramp-up *

Ion Sources

- Multiphysics end-to-end simulations *
- IG-LIS, LIST improvements
- laser ionization scheme development
- Fundamental molecular beam formation studies
- Multi-stage electrostatic ion extraction
- Ion sources operated in cathode bias-mode

Infrastructure and Reliability under Irradiation

- TIS front end development *
- Rad-hard target vessel seals *
- 2400 A aluminum connectors *
- Remote handling (hot cell training, mockups) *
- Removal of water-to-vacuum interfaces
- High-voltage delivery systems (Boris tube)

Novel Target Concepts

- Proton-to-neutron converter *
- High-emissivity coatings *
- Protective TaC coatings *

Join offline development capabilities to mitigate overbooking

- Offline separator *
- Thermal test stands
- Chemistry test stands
- Joint access to online test beams during CERN LSX
- Collection of medically or industrially relevant isotopes
- Isotope release studies using MEDICIS separator

Target Materials – SiC Nanofibres

- Offline SiC material development done
- Material production ongoing
- Tests schedule September 25 to October 01

Target Materials – UC_x Ramp-Up

Previous material synthesis:

- Two-step production
- UC_v in direct contact with Ta container
- Demanding in terms of infrastructure, manpower, schedule
- 10 weeks per target load

• New production method:

- One-step production
- Use of graphite intermediate container
- Less than one week per target load
- Material development to be concluded
- Online Tests in 2018

Fig. 3 Previous two-steps UC_x production method [1]

Fig. 4 New one-step UC_X production method, adopted from [2].

Fig. 5 Comparison of the previous (two-step) and new (one-step) UC_X target containers, carbothermal reduction, and morphological and crystallographic characteristics observed using SEM and XRD.

TRIUMF Novel Target Concepts – Proton-to-Neutron Converter

- Many nuclides are produced from the same actinide target <
- Experiments often suffer from isobaric contamination X Selective production is needed.
- Direct proton beam on target creates cold spots detrimental for isotope extraction x

New proton-to-neutron converter target

- Match or increase the standard production of neutron-rich fission fragments 🗸
- Reduce by a factor 100 the contamination from neutron deficient isobaric nuclides
- Avoid proton beam induced cold spots for more efficient isotope extraction <

- Development in collaboration with ISODE and SCK-CEN
- Offline development advanced but ongoing
- Online tests in 2018, beamtime approved, schedule to be release

Novel Target Concepts – Coatings

High-emissivity coatings

Laser micro-machining

Pulsed lasers have proven capable of micro-machining metals to increase their effective emissivity [5].

Work is ongoing to asses the applicability of the technique to tantalum and the survival micro-machining of the micro-structures at >2000 °C

Black rhenium coating

SEM view of a black rhenium >2000 °C coating [6].

Black rhenium coatings have been tested for solar probes with an emissivity of 0.8 at 1400 °C [6].

Work is ongoing to asses the durability of the structures at

The ARIEL thermal test stand

A thermal test stand capable of delivering 2400 A (12.5 V) to test components has been commissioned.

There is optical access from two sides and 12 thermocouple feedthroughs.

Results are used to validate simulations and for component testing.

Protective coatings

- ISAC container material thickness is only 350 µm to allow sufficient cooling
- Chemistry and formation of brittle TaC has been the dominant failure mode for all carbon-container targets (UC_v, SiC, TaC)
- Protective coating of TaC has been developed and mitigated this failure mode

Ion Sources – End-to-End Simulations

ISAC FEBIAD

Input parameters

- Input: current (cathode heating, magnet), voltage (cathode, extraction electrode, ground electrode), influx of atomic species
- Output: ionization maps, ion beam (emittance, intensity, time structure, shape)
- Development ongoing, in qualitative agreement with experimental data

Rad-hard vacuum seals

- EPDM (RH_{EPDM}) acceptable for lowpower ramp up
- At 100 kW, ARIEL requires 20x RH_{EPDM}
- PEEK seals being tested now (comparable forces, 50x RH_{EPDM}
- Polyimide (600 RH_{EPDM}) and metal seals under consideration

ARIEL front end and target development

Cooling water architecture & welding technology

- Novel rad-hard materials
- Further development on:
 - Extraction electrode mechanism
 - Pneumatic all-metal piston
 - •
- Fully compliant to remote handling standards
- Vacuum and services remote quick disconnects

Group of the Upgrade of ISOLDE, May 2018

Infrastructure

2400 A Al connectors

- All Al design to limit waste rad inventory and weigh
- Reliable up to 2400 A, 100 coupling repetitions
- Removal of all water to vacuum interfaces

Remote Handing

- Hot cell technology
- Remote handling practice
- Nuclear waste handling
- Operator training
- RH friendly design and validations

Collaboration Framework

- Lots of great ideas on all sides but manpower, infrastructure, skill and beam time limits
- Collaboration where interests overlap significantly AND where above limits are detrimental to conduct development
- What was presented are ideas where TRIUMF has significant interest and/or is significantly engaged
- Foster open communication on all levels
- Mutual benefit and fairness is absolutely required

The problems in all ISOL systems are widely identical, so are most of the solutions

Thank you! Merci!

