Benefits of 2-GeV protons @ ISOLDE for insource laser spectroscopy and betadelayed fission in the lead region. James Cubiss On behalf of the Windmill-RILIS-ISOLTRAP-IDS collaboration. #### In-source laser spec. in the Pb region α: 100.00% α: 100.00% 171Au 17 μS α: 100.00% 26.3 MS - Technique for studying evolution of deformation and shape coexistence in - Extensive campaign over the past 10 years. - Very successful, isotope shift and hyperfine structures of >70 ground and isomeric - **RED** data points measured at ISOLDE **RED** line the limit we have reached. - Still a number of outstanding questions. | | | | | > | | | <u>-</u> | | | | 191At
1.7 MS
0: 100.00% | 192At
11.5 MS
α: 100.00% | 193At
28 MS
0: 100.00% | 194At
310 MS
α | 195At
290 MS
0: 100.00% | 196At
0.388 S
c≈ 95.10%
ε: @ 4.90% | |--------------------------|--------------------------|------------------------|---------------------------|------------------------|------------------------|--------------------------|------------------------|--------------------------|------------------------|--------------------------|-------------------------------|--------------------------------|------------------------------|---------------------------|-------------------------------|---| | 110 | 115 | 5 1 | 20 | 125 | 130 | 1 | 186Ро
28 µS | 187Po
1.40 MS | 188Po
0.275 MS | 189Po
3.5 MS | 190Po
2.46 MS | 191Po
22 MS | 192Po
32.2 MS | 193Po
245 MS | 194Po
0.392 S | 195Po
4.64 S | | Neutron number | | | | | | | a≈ 100.00% | a: 100.00% | s: 100.00%
a | a: 100.00% | a: 100.00% | a: 99.00% | 0≂ 99,50%
8≂ 0,50% | as 100.00% | a: 100.00%
8 | a: 94.00%
8: 4.00% | | | | | | | | 184Bi
13 M S | 185Bi
58 μS | 186Bi
14.8 M S | 187Bi
37 MS | 188Bi
265 MS | 189Bi
674 MS | 190Bi
6.3 S | 191Bi
12.4 S | 192Bi
34.6 S | 193Bi
63.6 S | 194Bi
95 S | | | | | | | | a: 100.00%
a: 100.00% | P: 90.00%
a: 10.00% | a: 100.00% | a: 100.00% | a: 100.00%
E | a> 50.00%
8 < 50.00% | a: 90,00%
a: 10,00% | 0: 51.00%
8: 49.00% | 8: 88,00%
0: 12,00% | 8: 96,50%
0: 3,50% | 8: 99.54%
0: 0.46% | | | 178Pb
0.12 MS | 179Pb
3.5 MS | 180Pb
4.1 M S | 181Pb
36 MS | 182Pb
55 MS | 183Pb
535 M S | 184Pb
490 MS | 185Рb
6.3 S | 18бРь
4.82 S | 187РЬ
15.2 S | 188Рь
25.1 S | 189Pb
39 S | 190Pb
71 S | 191Pb
1.33 M | 192Pb
3.5 M | 193Pb
5.8 M | | | a: 100.00% | a: 100.00% | o≂ 100.00% | a: 100.00% | o≂ 98,00%
8≂ 2,00% | a≂ 90.00% | a: 80.00%
8: 20.00% | a: 34,00%
E | ଃ: 60.00%
α: 40.00% | 8: 88,00%
0: 12,00% | 8: 90.70%
0: 9.30% | 8: 100.00%
0 < 1.00% | 8: 99.60%
0: 0.40% | 8: 99.99%
0: 0.01% | 8: 99.99%
0: 5.9E-3% | 8 | | 176Tl
5.2 MS | 177Tl
18 MS | 178Tl
254 MS | 179Tl
0.23 S | 180Tl
1.09 S | 181 Tl
3.2 S | 182Tl
3.1 S | 183Tl
6.9 S | 184Tl
10.1 S | 185Tl
19.5 S | 186Tl
27.5 S | 187Tl
≃51 S | 188Tl
71 S | 189Tl
2.3 M | 190Tl
2.6 M | 191Tl
5.22 M | 192Tl
9.6 M | | P: 100,00% | a: 73.00%
P: 27.00% | o≂ 53.00%
5≂ 47.00% | a < 100.00%
E | 8: 94,00%
0: 6,00% | as 10.00%
E | 8: 97.50%
0 < 5.00% | ε> 0.00%
α | 8: 97.90%
0: 2.10% | 8 | a: 100.00%
o≈ 6.0E-3% | 8: 100.00%
0≈ 0.03% | s: 100.00% | | 175Hg
10.6 M S | 176Hg
20.3 M S | 177Hg
118 MS | 178Hg
266.5 M S | 179Hg
1.05 S | 180Hg
2.59 S | 181Hg
3.6 S | 182Hg
10.83 S | 183Hg
9.4 S | 184Hg
30.87 S | 185Hg
49.1 S | 186Hg
1.38 M | 187Hg
1.9 M | 188Hg
3.25 M | 189Hg
7.6 M | 190Hg
20.0 M | 191Hg
49 M | | a: 100.00% | a: 94.00% | a: 100.00% | a≈ 70.00%
a≈ 30.00% | a: 55,00%
a: 45,00% | 8: 52,00%
0: 48,00% | 8: 73.00%
0: 27.00% | 8: 86,20%
0: 13,80% | 8: 88,30%
0: 11,70% | 8: 98.89%
0: 1.11% | 8: 94.00%
0: 6.00% | 8: 99.98%
0: 0.02% | 8: 100.00%
α < 3.7E-4% | 8: 100.00%
0: 3.7E-5% | s: 100.00%
α < 3.0E-5% | s: 100.00%
α < 3.4E-7% | 8: 100.00%
0: 5.0E-6% | | 174Au
139 MS | 175Au
156 MS | 176Au
1.05 S | 177Au
1.53 S | 178Au
2.6 S | 179Au
7.1 S | 180Au
8.4 S | 181Au
13.7 S | 182Au
15.5 S | 183Au
42.8 S | 184Au
20.6 S | 185Au
4.25 M | 186Au
10.7 M | 187Au
8.4 M | 188Au
8.84 M | 189Au
28.7 M | 190Au
42.8 M | | a > 0.00% | α
ε | α | s: 60.00%
ග: 40.00% | as 60.00%
ca 40.00% | 8: 78.00%
0: 22.00% | ε < 98.20%
α > 1.80% | 8: 97.30%
0: 2.70% | ε: 99,87%
α: 0.13% | 8: 99,45%
0: 0.55% | 8: 100.00%
03: 0.02% | ε: 99.74%
α: 0.26% | 8: 100.00%
0: 8.0E-4% | 8: 100.00%
0: 3.0E-3% | s: 100.00% | 8: 100.00%
0 < 3.0E-5% | a: 100.00%
a < 1.0E-69 | # Specific cases - Measurement of ¹⁸⁶Bi is necessary in order to understand if isolated case, or staggering as in the mercury chain. - In all cases there is a smooth trend as well as dramatic behaviour does how far does this continue, when does it end? - In golds either side of deformed region, see mixed I=1/2 states, possibly linked to triaxiality? - In astatine a large jump in deformation (based on Q mom.) is seen, does this continue in the lightest isotopes? ## Interest/impact for theoreticians - Attempts to describe mercury results using two theoretical approached: - (a) Density Functional theory (DFT) - (b) Monte-Carlo shell model (MCSM) - The presently available functionals do not allow for reuniting these three aspects consistently, the essential features of the effect can be reproduced... - MCSM can reproduce experiment, however, surprising results! Number of protons & neutrons occupying intruder states much greater than expected! - The staggering in Hg is a subtle interplay between: - (i) shape coexistence - (ii) pairing strength - (iii) deformed shell structure ### Beta-delayed fission - Also considerable interest from theoretical community since discovery - Important for understanding of termination points in r-process, and fission recycling in stars. - A number of studies performed at ISOLDE on both n- and p-rich sides of chart. - In a number of cases, only low statistics were achieved. - For n-rich cases we need not only upgrade, but use of Th targets and LIST to help deal with contaminants! New and exciting frontier – isomerically selective bDF studies now possible at ISOLDE. L. Ghys, PRC 90, 041301(R) (2014) Need more yields! RILIS in narrowband mode significantly reduces the ion production rate!