

Top Yukawa coupling and CP-violation in the $t\bar{t}H$ coupling at 1.4TeV

7th Linear Collider School 2018, Frauenchiemsee

Yixuan Zhang¹ yixuan.zhang@cern.ch

Acknowledging contributions from
Philipp Roloff², Victoria Martin¹, Tom Coates³ and Fabrizio Salvatore³
University of Edinburgh¹, CERN², University of Sussex³

Outline

- CLIC overview
- ☐ The top Yukawa analysis at 1.4 TeV
 - Strategy and Pre-selections
 - Event Reconstruction and flavour-tagging
 - Multivariant selection (TMVA)
 - Results
- CP property of Higgs boson
 - Sample production and cross-section calculation
 - Preliminary sensitivity to CP mixing (cross-section)
 - Up-down asymmetry
 - Preliminary sensitivity to CP mixing (cross-section + up-down asymmetry)
- Summary

Compact Linear Collider (CLIC)

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

Motivation

Pros:

- 1. Strongest Yukawa coupling
- High rates of production of Higgs with top pairs
- 3. Direct probe of CP properties of Higgs boson

Cons:

- 1. Large number of final states
- 2. Large backgrounds, e.g. from $t\bar{t}$

Analysis Strategy

$$e^+ + e^-
ightarrow t ar{t} H$$
 , $H
ightarrow b ar{b}$ $\sqrt{s} =$ 1.4 TeV, $L =$ 1.5 ab $^{ ext{-}1}$.

$tar{t}H$ decay	BR(of all possible decay of H)	No. Leptons	Channel classification
$t\bar{t} \rightarrow 6jets, H \rightarrow bb$	$H \rightarrow bb$ 46%		Hadronic
$t\bar{t} \rightarrow 4jets + 1l + 1\bar{v}_l, H \rightarrow bb$	45%	1	Semi-leptonic
$t\bar{t} \rightarrow 2jets + 2l + 2\bar{v}_l, H \rightarrow bb$	9%	>1	Not analysed further

^{*}The top-Yukawa analysis is a refinement of previous analysis CLICdp-Note-2014-001

Signal and Background samples

Process	Cross-section (fb)	Generator	Weight
$t\bar{t}H, t\bar{t} \rightarrow 6jets, H \rightarrow bb$	0.431	Physsim	0.03
$t\bar{t}H, t\bar{t} \rightarrow 4jets, H \rightarrow bb$	0.415	Physsim	0.03
$t\bar{t}H, t\bar{t} \rightarrow 6jets, H \nrightarrow bb$	0.315	Physsim	0.02
$t\bar{t}H, t\bar{t} \rightarrow 4jets, H \not\rightarrow bb$	0.303	Physsim	0.02
$t\bar{t}H, t\bar{t} \rightarrow 2jets, H \rightarrow bb$	0.100	Physsim	0.006
$t\bar{t}H, t\bar{t} \rightarrow 2jets, H \not\rightarrow bb$	0.073	Physsim	0.004
$t\bar{t}Z, t\bar{t} \rightarrow 6jets$	1.895	Physsim	0.1
$t\bar{t}Z,t\bar{t} o 4jets$	1.825	Physsim	0.1
$t\bar{t}Z,t\bar{t} o 2jets$	0.439	Physsim	0.03
$t\bar{t}bb$, $t\bar{t} o 6jets$	0.549	Physsim	0.03
$t \bar{t} b b, t \bar{t} o 4 jets$	0.529	Physsim	0.03
$t\bar{t}bb$, $t\bar{t} o 2jets$	0.127	Physsim	0.008
$tar{t}$	135.8	PYTHIA	1.5

^{*}Detector: SiD; Polarisation: (0,0)

Event reconstruction strategy

Top, W^\pm and Higgs Reconstruction

At $\sqrt{s}=1.4$ TeV, ~ 1.3 $\gamma\gamma\to hadrons$ per bunch-crossing. Background suppression level is changed 'Default' \to 'Tight' and jet clustering radius is optimised.

<u>Chi-square method</u> is used to reconstruct the W^{\pm} , top and Higgs candidates by combining the jets.

Semi-leptonic:

$$\chi_6^2 = \frac{(M_{12} - M_{W^{\pm}})^2}{\sigma_{W^{\pm}}^2} + \frac{(M_{123} - M_t)^2}{\sigma_t^2} + \frac{(M_{45} - M_H)^2}{\sigma_H^2}$$

Hadronic:

$$\chi_{8}^{2} = \frac{(M_{12} - M_{W^{\pm}})^{2}}{\sigma_{W^{\pm}}^{2}} + \frac{(M_{123} - M_{t})^{2}}{\sigma_{t}^{2}} + \frac{(M_{45} - M_{W^{\pm}})^{2}}{\sigma_{W^{\pm}}^{2}} + \frac{(M_{456} - M_{t})^{2}}{\sigma_{t}^{2}} + \frac{(M_{78} - M_{H})^{2}}{\sigma_{H}^{2}} + \frac{(M_{78} - M_{H})^{2}}{\sigma_{H}^{2}}$$

The leptonic W^{\pm} and top are reconstructed using jets, an isolated lepton and a neutrino.

Event selection using TMVA

Kinematic variables and tagging information are used as input to the TMVA(BDTG) separately for the full-hadronic (27 variables) and semi-leptonic (23 variables) channels (examples plots see backup slides):

BDTG response

The BDTG response for signal and background samples. Optimise significance (Left): Normalised BDTG response. $S/\sqrt{S+B}$

(Right): Scaled BDTG to number of events expected in 1.5 ab⁻¹ with new set of samples by using the result from (Left).

Selection efficiency after BDT

Process	Evt in	Evt with	Evt with	Evt pass	Evt pass
	$1.5 {\rm ~ab^{-1}}$	0 Lepton	1 Lepton	Had BDT	SL BDT
$t\bar{t}H$, 6 jets, $H\rightarrow b\bar{b}$	647	555 (85.9%)	86 (13.4%)	(367 (56.8%)	38 (5.91%)
$t\bar{t}H$, 4 jets, $H\rightarrow b\bar{b}$	623	208 (33.4%)	432 (69.4%)	1 (0.14%)	(270 (43.4%))
tīH, 6 jets, H→bb	473	276 (58.4%)	143 (30.2%)	54 (11.4%)	11 (2.32%)
tīH, 4 jets, H∳bb̄	455	70 (15.4%)	237 (52.2%)	8 (1.85%)	22 (4.88%)
$t\bar{t}H$, 2 jets, $H\rightarrow b\bar{b}$	150	9 (6.18%)	53 (35.6%)	2 (1.65%)	22 (14.8%)
tīH, 2 jets, H∳bb̄	110	4 (3.90%)	27 (25.0%)	0 (0.11%)	1 (1.19%)
tīZ, 6 jets	2843	2133 (75.0%)	445 (15.7%)	345 (12.1%)	34 (1.21%)
tīZ, 4 jets	2738	571 (20.9%)	1726 (63.0%)	59 (2.14%)	217 (7.94%)
tīZ, 2 jets	659	36 (5.49%)	214 (32.5%)	1 (0.22%)	16 (2.45%)
tībb, 6 jets	824	720 (87.5%)	95 (11.6%)	326 (39.5%)	26 (3.14%)
tībb, 4 jets	794	193 (24.3%)	552 (69.5%)	57 (7.15%)	226 (28.54%)
tībb, 2 jets	191	11 (5.84%)	70 (36.7%)	2 (0.82%)	18 (9.70%)
t t	203700	116181 (57.0%)	76732 (37.7%)	498 (0.24%)	742 (0.36%)
total ttH signal	2458	1123 (45.7%)	978 (39.8%)	433 (17.6%)	365 (14.8%)
total background	211749	119846 (56.6%)	79834 (36.3%)	1287 (0.61%)	1280 (0.60%)
Significance				10.44	9.00

Result on top-Yukawa coupling

To translate the <u>cross-section</u> measurement into <u>top-Yukawa coupling</u> at 1.4 TeV, a linear approximation with NLO QCD prediction is used (thanks to Juergen Reuter and Vincent Rothe from DESY^[1]):

$$\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}} = 0.503 \frac{\Delta \sigma(t\bar{t}H)}{\sigma(t\bar{t}H)}$$
[1] JHEP 1612 (2016) 075

	Significance	$\Delta \sigma/\sigma$	$\Delta g_{ttH}/g_{ttH}$
Hadronic	10.44σ	7.20/	3.7%
Semi-leptonic	9.00σ	7.3%	

CP violation in $t\bar{t}H$ production

A model-independent way of parameterising the CP mixing in Higgs:

- $C_{t\bar{t}\Phi} = -ig_{t\bar{t}H}(a + ib\gamma_5)$
- SM: a = 1, b = 0; pure CP-odd: a = 0, $b \ne 0$.

assume $a^2 + b^2 = 1$ with $a = \cos(\phi)$ and $b = \sin(\phi)$; measurement of the mixing angle ϕ indicates the CP properties of Higgs.

 $t\bar{t}\Phi$ cross section (thanks for Philipp Roloff for generating the samples):

- Generator: Physsim
- \sqrt{s} = 1.4 TeV
- Polarisation = (0,0)
- ISR included
- CLIC luminosity spectrum
- 12 samples produced

Cross section to CP-mixing sensitivity

- $\sigma_{fit}=k\sin^2\phi+\mathcal{C} o \Delta\sigma=k\Delta\sin^2\phi$ Apply the top-Yukawa analysis procedure to all samples
- Measure $\Delta \sigma / \sigma$ for all $\sin^2(\phi)$ values in the semi-reptonic channel
- Extrapolate the hadronic result by using the cross-section ratio σ_{CP}/σ_{SM}
- Combine the result from both channels

The up-down asymmetry

The up-down asymmetry A_ϕ of an antitop with respect to the top-electron plane is an observable that is sensitive to CP violation.

The angle θ_{ϕ} between the antitop and the top-electron plane is given by

$$\sin(\theta_{\phi}) = \frac{\vec{p}_{\bar{t}}(\vec{q}_{e^-} \times \vec{p}_t)}{|\vec{p}_{\bar{t}}||(\vec{q}_{e^-} \times \vec{p}_t)|}$$

The up-down asymmetry of the $t \bar t \Phi$ cross section σ is defined as

$$A_{\phi} = \frac{\sigma(\sin \theta_{\phi} > 0) - \sigma(\sin \theta_{\phi} < 0)}{\sigma(\sin \theta_{\phi} > 0) + \sigma(\sin \theta_{\phi} < 0)}$$

 $\sigma=\sigma(up)+\sigma(down)$ where 'up' ('down') denotes the cross section integrated over $\theta_{\phi}\in[0,\pi)$ ($\theta_{\phi}\in[\pi,2\pi)$).

Interference between $t\bar{t}\Phi$ and $ZZ\Phi$!

[1] arXiv:1103.5404v1

$A_{m{\phi}}$ with quality cuts

$$A_{\phi} = \frac{\sigma(\sin\theta_{\phi} > 0) - \sigma(\sin\theta_{\phi} < 0)}{\sigma(\sin\theta_{\phi} > 0) + \sigma(\sin\theta_{\phi} < 0)}$$

Quality cuts:

- Remove taus
- $\bullet \quad m_{t_l} m_{t_q} < 100$
- jetmatch $\chi^2 < 10$

Preliminary results

- The measurement of $\sin^2 \phi$ by using up-down asymmetry.
- Then the errors can be extracted to measure sensitivity of CP mixing.

Summary

- •This analysis has found $\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}}=3.7\%$ with integrated luminosity of 1.5 ab⁻¹ at $\sqrt{s}=1.4$ TeV at CLIC with unpolarised beam,
 - Old CLIC analysis found 4.27%,
 - ILC at 1 TeV found 4.5%.
- •Improvements from increased $\gamma\gamma$ \rightarrow hadrons background suppression and improved flavour-tagging performance (b-tagging specifically).
- •Sensitivity to CP violation is determined $\Delta \sin^2(\phi) \simeq 0.1$ with cross section measurement.
- An angular distribution using up-down asymmetry has shown an improvement to CP sensitivity, but the method needs to be consolidated.
- Further observables to increase the CP violation sensitivity will be investigated in the future.

Thank you!

Backup Slides

Leptons

The leptons are searched in two ways:

- Isolated leptons (electron, muon): using IsolatedLeptonFinder
 - Track energy > 15 GeV
 - $d_0, Z_0, R_0 < 0.05 mm$

•
$$R_{CAL} = \frac{E_{ECAL}}{E_{ECAL} + E_{HCAL}} > 0.9$$
, or $0.05 < R_{CAL} < 0.3$

- <u>Tau leptons</u>: using TauFinder
 - $p_T > 2 \text{ GeV/c}$
 - Cone angle > 0.04 rad
 - Seed track $p_T > 10 \text{ GeV/c}$
 - $0.01mm < R_0 < 0.5mm$
 - Reconstructed m_{tau} < 1.5 GeV/c²
 - 0.04 < Isolation ring < 0.25 rad
 - Less than 5 particles in the isolation ring, with total energy < 5 GeV

Lepton identification

The leptons are searched in two ways:

- Isolated leptons (electron, muon): using IsolatedLeptonFinder
- Tau leptons: using TauFinder

(detailed selection criteria are in backup slide)

retains 87% of truth-matched electrons and muons, 85% of taus that decay from W^{\pm} ; 0.4% of other reconstructed particles.

Pre-selection:

Selects Hadronic - 86%, Semi-leptonic - 69%.

Flavour-tagging

LCFIPlus is tuned using $e^+e^- \rightarrow qqqqqq$ samples with the same flavour for all the quarks.

From the LCFIPlus, we use:

- b-tag and c-tag probability;
- y_{ij} the distance between two closest jets.

tīZ, 2 jet
tīZ, 6 jet
tīZ, 4 jet
tīZ, 4 jet

* A bug which influences the performance of the flavour-tagging has been fixed. Retuning the LCFIPlus improves the b-tagging performance.

Parameters determined

Using the modified Gaussian, the parameters in the Chi-square function can be determined:

$$f = \exp(\frac{-(x-\mu)^2}{g}) \begin{cases} g = 2\sigma_L^2 + \alpha_L(x-\mu)^2, x < \mu \\ g = 2\sigma_R^2 + \alpha_R(x-\mu)^2, x > \mu \end{cases}$$

	Mass (GeV/c²)	$\sigma_L \ (GeV/c^2)$	$\sigma_R \ (GeV/c^2)$
W^{\pm}	79.1	5.81	6.69
Тор	169.3	12.5	12.2
Higgs	121.7	13.4	8.00

Table 2: Parameters for the invariant mass distribution of the W, top and Higgs candidates, fitted using modified Gaussian, using default background suppression and jet radius 1.0.

Result on top-Yukawa coupling

To translate the <u>cross-section</u> measurement into <u>top Yukawa coupling</u> at 1.4 TeV, a linear approximation is used (old, using quadratic fit):

$$\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}} = 0.53 \frac{\Delta \sigma(t\bar{t}H)}{\sigma(t\bar{t}H)}$$

Event selection using TMVA

These variables are used as input to the TMVA(BDTG) separately for the full-hadronic and semi-leptonic channels (examples plots see backup slides):

For both channel:

- reconstructed Higgs mass, M_{ii}
- number of reconstructed particles
- visible energy in jets
- missing p_T
- χ^2 chi-squared value of the reconstructed jets
- · event shape variables thrust, sphericity and aplanarity
- 4 highest b-tag probabilities and the corresponding ctag
- cosine of decay angle of the H o b ar b decay
- cosine of the angles between Higgs and top
- y_{ij} , the values y_{45} , y_{56} and y_{67}

For semi-leptonic:

- Cone energy of the isolated lepton
- Ratio of energy deposits in the calorimeter of the isolated lepton
- -> 23 variables

For hadronic:

- Energy of the 4 lowest-energy jets
- Cosine of the angle of two closest jets to the beam-axis
- -> 27 variables

Semi-leptonic Semi-leptonic Semi-leptonic 0.1 10 0.08 10 0.06 10^{-3} 10 0.04 10 0.02 0.005 0.01 0.02 0.025 Lepton D0 IP 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Lepton calorimeter sum ratio 100 150 200 250 Lepton cone energy (GeV) Semi-leptonic Semi-leptonic Semi-leptonic 0.07 0.08 0.06 0.08 0.05 0.06 0.04 0.03 0.04 0.02 0.02 0.02 0.0 150 200 250 300 Missing p_T (GeV/c) 200 250 30 Number of PFOs 50 100 800 1000 1200 1400 Energy in jets (GeV) 150 100 400 600

N.B The results presented here are all for the semi-leptonic signal channel.

BDTG cut efficiency & optimal significance

Optimal significance obtained for the semi-leptonic channel.

CP observables

An observable sensitive to CP violation must be odd under CP transformation. There are couple of variables that we can measure to investigate the CP violation [1]:

- Up-down asymmetry
 - → directly test CP violation
- The polarisation asymmetry of the top quark
 - \rightarrow distinguish between CP even and CP odd Higgs

Figure: Feynman diagrams of ttH production.

[1] Reference: R.M. Godbole, C. Hangst, M. Mu hlleitner, S.D. Rindani and P. Sharma, "Model-independent analysis of Higgs spin and CP properties in the process $e^+e^- \rightarrow tt\Phi$ ", arXiv:1103.5404v1 [hep-ph] 28 Mar 2011

MC vs Rec (investigation)

Correlation of $\sin\theta_\phi$ between MC and Rec:

- A lot of background
- Opposite diagonal line
 - > Mis-identification of top

How to cut away mis-identified top?

Choose suitable cuts by looking at events passing or failing:

$$\left|\sin(\theta_{\phi_{rec}}) - \sin(\theta_{\phi_{mc}})\right| < 0.05$$
:

$$\left|\sin(\theta_{\phi_{rec}}) - \sin(\theta_{\phi_{mc}})\right| < 0.05$$

$m_{t_{lep}}-m_{t_{had}}$ from reconstruction:

$$\rightarrow m_{t_l} - m_{t_q} < 100$$

$$\rightarrow$$
 jetmatch $\chi^2 < 10$

χ^2 template fitting

- 1. Errors in each bin are calculated as \sqrt{N}
- 2. Calculate χ^2 for a specific $\sin^2 \phi$ value (e.g =0.5),
- 3. Calculate χ^2 for all other $\sin^2 \phi$ values with $\sin^2 \phi = 0.5$ as data, and fit the χ^2 curve using $y = a + bx + cx^2$. Obtain the minimum point as the measurement for $\sin^2 \phi$,
- 4. Smear data point by assuming Gaussian distribution and draw/fit the χ^2 curve,
- 5. Obtain the minimum point from fitted χ^2 curve and fill a $\sin^2 \phi$ histogram. Fit the histogram to obtain mean and standard deviation.
- 6. Repeat procedure 1-5 for other $\sin^2 \phi$ values.

$\sin(heta_\phi)$ calculation

Top/anti-top identification (semi-leptonic):

- 1. Find the charge of the identified lepton $(e^{\pm}, \mu^{\pm}, \tau^{\pm})$,
- 2. If charge<0, the leptonic reconstructed $t/\bar{t}(blnu)$ is a top and $t/\bar{t}(bqq)$ is antitop, vice versa.

Calculation procedure:

- 1. Obtain the 4-momentum of the reconstructed top and antitop in their rest frames,
- 2. Assume electron 4-momentum $p_{e^-} = (0.0,7000,7000)$,
- 3. Boost e^- , t and \bar{t} to $t\bar{t}\Phi$ rest frame,
- 4. Calculate the vector of electron-top plane,
- 5. Calculate $\sin \theta_{\phi}$.

MC: Follows same calculation procedure as above, but use top, anti-top and electron 4-momentum from generator level.

χ^2 template fitting

$$\chi_n^2(\sin^2\phi = 0.5) = \sum_{i=1}^{nbins}$$

- n is the different $\sin^2 \phi$ samples.
- $O_{MC(n)}$ is the number of events in the same bin of different $\sin^2 \phi$ samples.

Error estimation

Fitting function:
$$f(x) = \exp(\frac{-(x-\mu)^2}{g}) \begin{cases} g = 2\sigma_L^2 + \alpha_L(x-\mu)^2, x < \mu \\ g = 2\sigma_R^2 + \alpha_R(x-\mu)^2, x > \mu \end{cases}$$

The top polarisation asymmetry

The angular distribution in the decay $t \rightarrow bW \rightarrow blv$ is not affected by any non-standard effects in the decay vertex, so it is a another observable in probing the Higgs CP properties.

The polarisation asymmetry is given by

$$P_t = \frac{N(t_L) - N(t_R)}{N(t_L) + N(t_R)}$$

Where $t_{L,R}$ denotes a left/right-handed top.

Figure : The top polarisation asymmetry for various Higgs models with unpolarised e[±] beams [1].