

Lawrence Berkeley National Laboratory

Experimental Systematics for HL-LHC projections - ATLAS -

Simone Pagan Griso (LBNL) Sarah Demers (Yale) Marianna Testa (LNF) Stephane Jezequel (CNRS) Marumi Kado (CNRS)

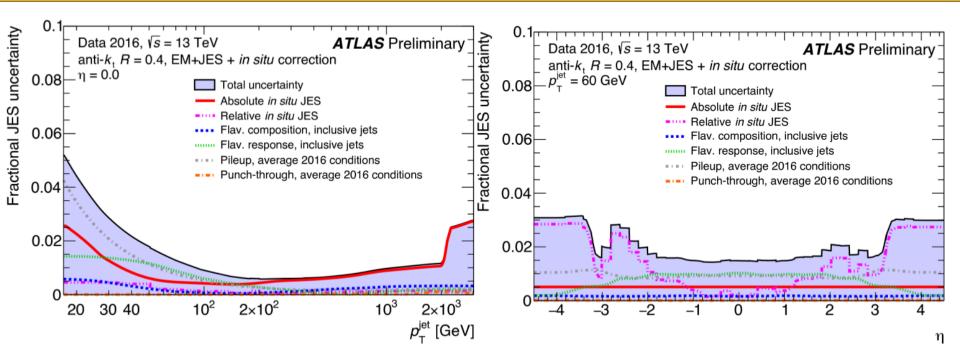
Yellow-Report HL/LHC - WG2 9th May 2018

Introduction

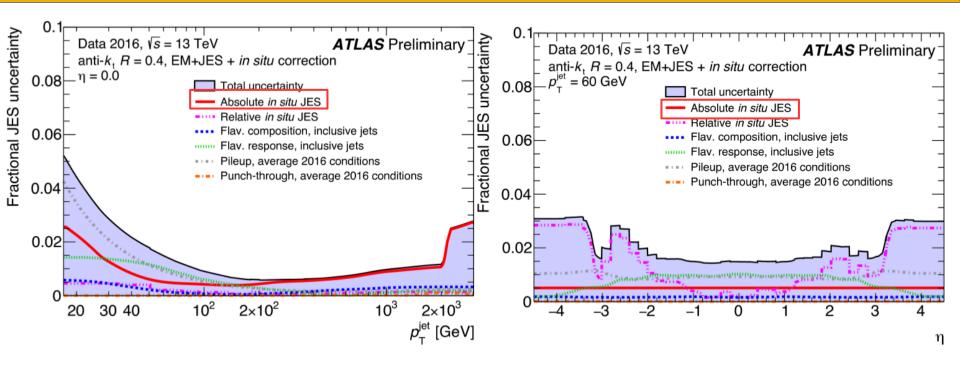
- Current approaches for systematic uncertainties (used in TDRs):
 - assume similar uncertainties as Run-2
 - no systematic (i.e. statistical uncertainty only)
- Clearly we don't want to be over-conservative, nor over-optimistic
 - Some projection clearly limited by systematics with HL-LHC dataset
 - Pile-up effects make projections of systematics harder
 - Systematics may be sub-dominant now but relevant with more data
- How can we project our understanding of systematics?
 - statistics available
 - intrinsic detector limitations
 - new methods may improve our understanding of the detector beyond what we can foresee right now
 - simulation modeling uncertainties rely on theory advances as well

ATLAS projections needs

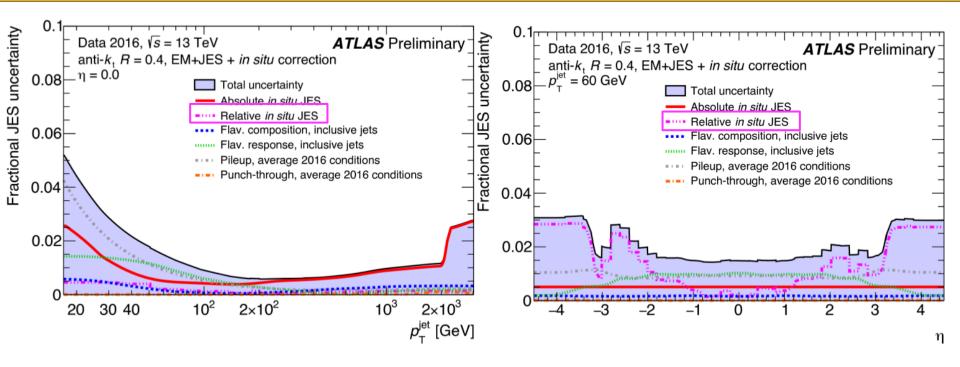
- Extrapolation from past Run-2 results
 - usually based on existing statistical frameworks
 - capture the full complexity of multi-variables / multi-region analyses
 - use numerous nuisance parameters to capture the deep understanding of systematics with current detector
 - "scale-factors" for event yields can account for expected performance improvements, but no re-optimization possible
 - Best for systematic uncertainties projections is to have projection on individual nuisance parameters (won't go in that detail here, but discuss overall "classes")
 - Need to pay attention to profiling (over-constraints, correlations,..)
- Truth-based analysis with parametrized detector performance
 - simplified analysis, usually simple cut-and-count but allows reoptimization of selections
 - systematics usually accounted as "flat" numbers (or neglected)
 - Best for systematic uncertainties projections is to have simplified uncertainty estimation for dominant sources

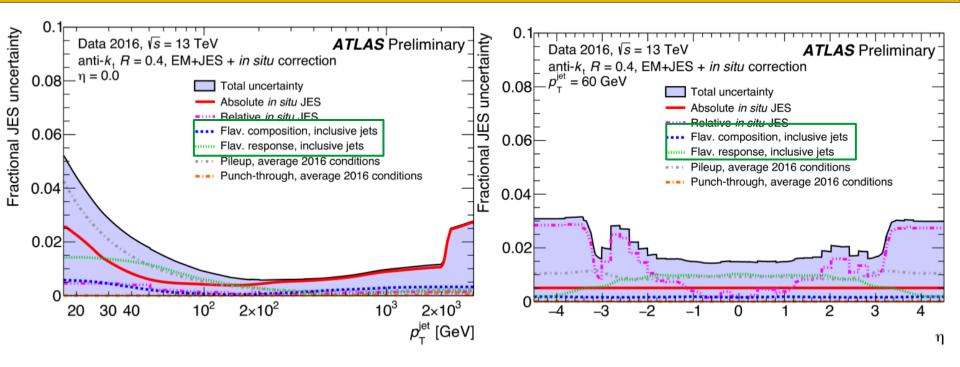


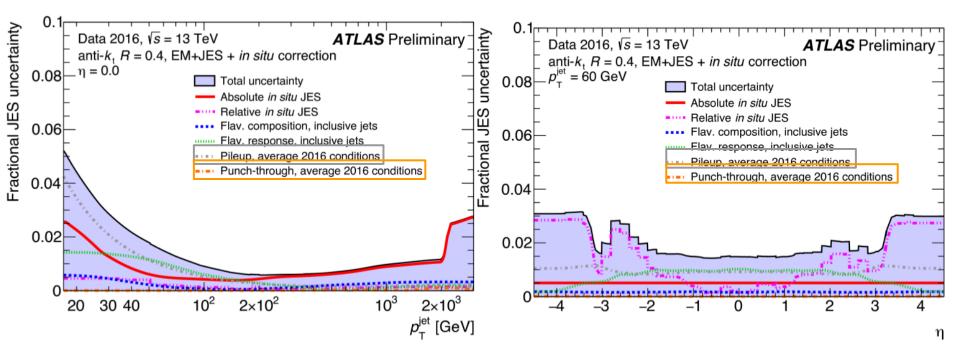
- Discussion session with performance groups within ATLAS
 - process still ongoing
 - aim to focus on systematics that are most important for the projection studies we need (can't be comprehensive!)
 - derive scaling of main systematic nuisance parameters and overall "uncertainties" as function of X for truth-based projections
- Some common themes/assumptions cross-group
 - statistics-driven sources (data or MC) $\rightarrow 0$
 - intrinsic detector limitations stay ~constant
 - simulation modeling uncertainty are halved (?), unless noted
 - specific inputs from theorists very welcome!
 - It was felt that often pile-up challenges will be compensated by algorithmic improvements
- Aim to get a roughly realistic projection
 - i.e. sometimes will be still pessimistic, sometimes may be optimistic


What uncertainties matter?

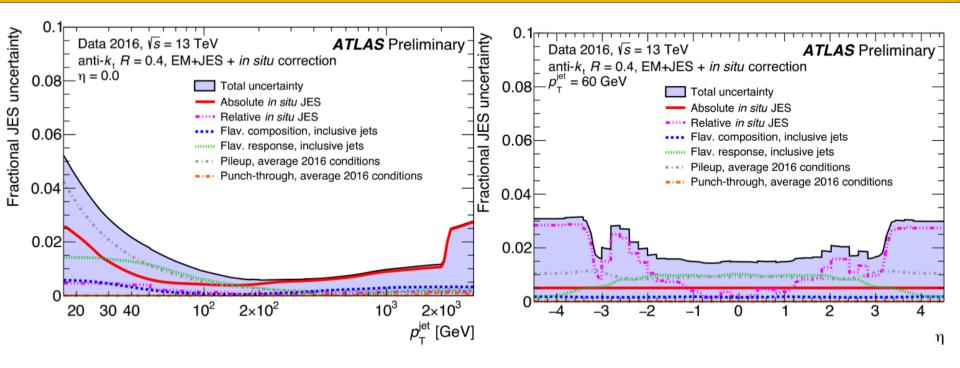
Торіс	Channel	Method	Dominant systematic
Diboson	hyy	Parametrized comb.	PES/PER, JES/JER
Diboson	hWW	Parametrized comb.	
Diboson	hZZ	Parametrized comb.	ggF:leptons, others:JES/JER
Differential	Hbb and STXS	-	
Differential	Hyy and STXS	Run2 extrapolation (TDR)	PES/PER
Differential	H4I and STXS	Parametrized old	
Fermion	VHbb	Partial par.	Jet/MET, BTag
Fermion	Htautau	Partial par.	Jet/MET, Tau
Non-resonant HH	bbyy	lobe	Small (E. Petit study)
Non-resonant HH	ttHH (bbbb)	Parametrized	
Non-resonant HH	bbbb		Multi-jet shape (TH)
Non-resonant HH	bbtautau	Run2 extrapolation	Tau fake
Rare decay	HZy	Parametrized	
Rare decay	Hmumu	Parametrized	
Top yukawa	ttH (all channels)	-	JES/JER, BTag
Top yukawa	ttH (bb)	-	BTag, JES/JER


- Example above for a subset of Higgs projections planned
- Most "wanted": Jet/ γ Energy Scale/Resolution, MET, B-tagging, Tau
- Less critical: leptons (e,μ), (hadronic) tracking

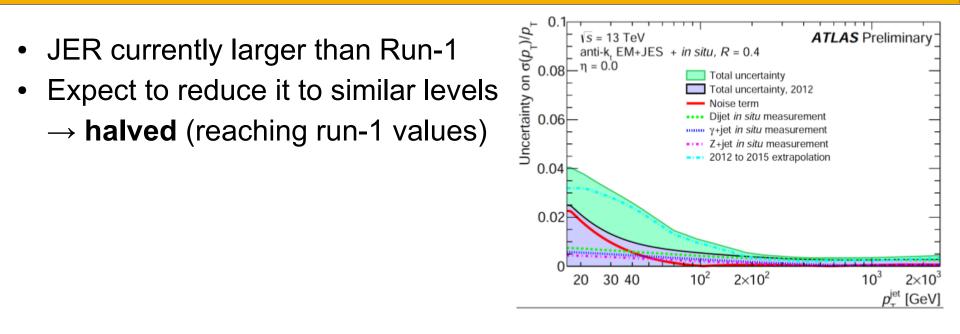

- Starting point: latest run-2 public results
- Will go in a bit more detail for this important systematic


- Absolute "in-situ" JES
 - low-medium p_{τ} from Z+jets balance study
 - dominated by generator differences, pile-up rejection, radiation
 - overall expect improvements to balance challenges \rightarrow **keep same**
 - high-p_{τ} dominated by photon energy scale in γ +jets balance
 - Expect better accuracy with large statistics \rightarrow **halved**
 - Other components will be neglected, based on current experience

- Relative "in-situ" JES
 - dominated by statistics and simulation modeling
 - in this case it was felt advances in modeling can be substantial
 - Expect it will become negligible \rightarrow **0**



- Flavor composition and response
 - mainly comes from how generators model gluon jet radiation
 - rely on fragmentation measurements and re-tuning of parton shower generators
 - Propose to have two scenarios:
 - Optimistic → halved
 - Baseline → keep same


- Pile-up
 - Current method bring an increase uncertainty with pile-up
 - Expect new methods will be developed to at least compensate
 - Two scenarios:
 - Baseline \rightarrow keep same
 - Optimistic → halved

- Punch-through, high-pT
 - single particle response but kicks in when we run out of statistics in the multijet balance
 - expect large statistics will allow us to make this negligible $\rightarrow 0$

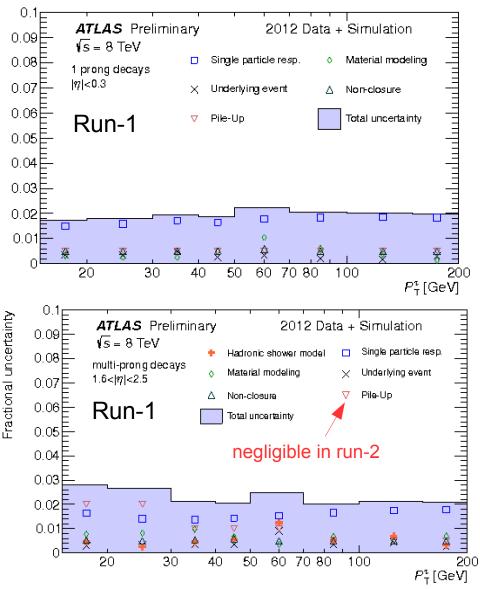
- Overall we have now a clear recipe to scale all individual nuisance parameters for run-2 extrapolations
- We will then produce "summary" plots (like the ones above) for truth-based projections for which this is an important uncertainty
 - Applied as additional shift to the true (smeared) value

Jet Energy Resolution / MET

- MET systematics driven by object scale/resolution uncertainties
- Soft-term uncertainties are rarely dominant and hard to extrapolate
 → keep same
 - discuss exceptions on a case-by-case

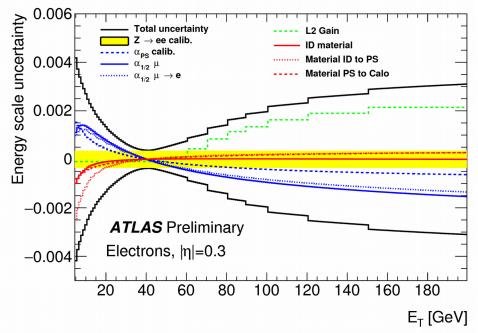
Flavor tagging

• Data/MC scale-factor measured using in-situ techniques


Calibration method	Dominating uncertainties	
b-tagging ttbar PDF	Modeling: Pythia vs PowHeg vs aMC@NLO	
b-tagging ttbar tag-n-probe	Modeling: parton showering, matrix element, ISR/FSR	
c-tagging W+c	Jet/MET reconstruction, modeling (c-flavor decays), MC statistics	
c-tagging ttbar \rightarrow c	Modeling, MC+data statistics, light tag SF	
mistag negative tagging	track uncertainties (IP, fakes), HF fraction, MC+data statistics (low jet pT)	
mistag adjusted MC	track uncertainties (IP, fakes)	

- Statistics-dominated uncertainties $\rightarrow 0$
- MC modeling uncertainties → halved (optimistic) [,same (baseline)]
 - currently mainly from generator comparisons
- Expect new methods to perform better at high-pT/ η
 - current uncertainties too large \rightarrow under discussed (CMS?)

• Most important components:


Fractional uncertainty

- ID efficiency
- Tau Energy Scale
- others less important
 → neglected
- Tau ID
 - Mostly limited by systematics
 - Simulation τ modeling
 - Fakes background
 - Expect "floor" of ~ 5%
 - Under discussion $p_{T} > 250 \text{ GeV}$
- Tau Energy Scale
 - Theory modeling, detector, in-situ
 - Expect "floor" of ~ 2-3%
 - Under discussion for high pT

Photon/Electrons

- ID efficiency for e/γ already at $0.5\% \rightarrow keep same$
 - however low- p_{T} regime has larger uncertainties
- Energy scale calibration
 0.1%(0.2%) to 0.3%(0.5%)
 for e (γ) → keep same
 - larger dataset will help in monitoring detector stability
 - expect to be able to mitigate larger pile-up effects
 - critical understanding of detector seems difficult to go much furth
- Energy resolution
 - About 10% @ 60 GeV, ultimately dominated by basic detector knowledge
 - Pile-up modeling will play a role, but expect to mitigate it \rightarrow keep same

- Reconstruction + ID efficiency well known (~0.1%)
- Scale and resolution also well measured
- Most of these measurements are systematically limited but robust against pile-up
- Baseline plan is to keep current uncertainties
 - if a particular analysis is limited by this, can be revised
 - note: measurements as m(W) will rely on dedicated low- μ datasets
- Very high momentum muons (~TeV) have larger uncertainties
 - under investigation impact on analyses (e.g. Z')
 - if relevant, will probably try to be more optimistic than now (e.g. assuming dedicated toroid-off runs for alignment, ...)

Background modeling uncertainties

- MC modeling enters directly into uncertainties on backgrounds too
 - likely too wide of a problem, it needs discussion on a case-by-case
 - or could attempt to define a common assumption?
 - \rightarrow as-is vs $^{1\!\!/_2}$ comparison
- Data-driven background can be limited by
 - statistics in control region \rightarrow will get better with \sim sqrt(L)
 - closure of method \rightarrow harder to improve, keep same
- MC statistical uncertainty is assumed \rightarrow **0**
- Reality is less black&white than above and requires some judgments to be done on a case by case, but guidelines above could still be useful

- Wide range of **experimental systematics**, but no need to cover all
- Extrapolation of existing analyses:
 - assumption on scaling of systematics as nuisance parameters
 - care to be taken to ensure no over-constraint, if it happens can think of applying scaling "post-fit" (manually)
- Truth-based analyses:
 - simplified parametrization vs pT, η , ... for dominant uncertainties
- Overall approach philosophy (with exceptions) for discussion:
 - statistical (data/MC) uncertainty usually $\rightarrow 0$
 - physics simulation modeling $\rightarrow \frac{1}{2}$ (comparing w/ no scaling)
 - often new methods are expected to compensate for increased pileup effects