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Introduction

» Current approaches for systematic uncertainties (used in TDRSs):

— assume similar uncertainties as Run-2
- no systematic (i.e. statistical uncertainty only)

» Clearly we don't want to be over-conservative, nor over-optimistic

- Some projection clearly limited by systematics with HL-LHC dataset
- Pile-up effects make projections of systematics harder
- Systematics may be sub-dominant now but relevant with more data

 How can we project our understanding of systematics?

— statistics available

— intrinsic detector limitations

* new methods may improve our understanding of the detector
beyond what we can foresee right now

- simulation modeling uncertainties rely on theory advances as well



ATLAS projections needs

« Extrapolation from past Run-2 results

- usually based on existing statistical frameworks
— capture the full complexity of multi-variables / multi-region analyses

— use numerous nuisance parameters to capture the deep
understanding of systematics with current detector

- “scale-factors” for event yields can account for expected
performance improvements, but no re-optimization possible

- Best for systematic uncertainties projections is to have
projection on individual nuisance parameters
(won't go in that detail here, but discuss overall “classes”)

- Need to pay attention to profiling (over-constraints, correlations,..)

* Truth-based analysis with parametrized detector performance
- simplified analysis, usually simple cut-and-count but allows re-
optimization of selections
- systematics usually accounted as “flat” numbers (or neglected)

- Best for systematic uncertainties projections is to have
simplified uncertainty estimation for dominant sources 3




e Discussion session with performance groups within ATLAS

— process still ongoing

- aim to focus on systematics that are most important for the
projection studies we need (can't be comprehensive!)

— derive scaling of main systematic nuisance parameters and overall
“uncertainties” as function of X for truth-based projections

¢ Some common themes/assumptions cross-group

- statistics-driven sources (data or MC) — 0
- intrinsic detector limitations stay ~constant

- simulation modeling uncertainty are halved (?), unless noted
« specific inputs from theorists very welcome!

- It was felt that often pile-up challenges will be compensated by
algorithmic improvements

« Aim to get a roughly realistic projection
- 1.e. sometimes will be still pessimistic, sometimes may be optimistic



What uncertainties matter?

Topic Channel Method Dominant systematic
Diboson hyy Parametrized comb. PES/PER, JES/JER
Diboson hWW Parametrized comb.

Diboson hZZ Parametrized comb. ggF:leptons, others:JES/JER
Differential Hbb and STXS -

Differential Hyy and STXS Run2 extrapolation (TDR) PES/PER

Differential H4l and STXS Parametrized old

Fermion VHbb Partial par. Jet/MET, BTag

Fermion Htautau Partial par. Jet/MET, Tau
Non-resonant HH  bbyy IO be Small (E. Petit study)

Non-resonant HH  ttHH (bbbb) Parametrjzed

Non-resonant HH  bbbb Multi-jet shape (TH)
Non-resonant HH  bbtautau Run2 extrapolation Tau fake

Rare decay HZy Parametrized

Rare decay Hmumu Parametrized

Top yukawa ftH (all channels) - JES/JER, BTag
Top yukawa ftH (bb) - BTag, JES/JER

 Example above for a subset of Higgs projections planned
* Most “wanted”: Jet/y Energy Scale/Resolution, MET, B-tagging, Tau

» Less critical: leptons (e,u), (hadronic) tracking



Jet energy scale
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« Starting point: latest run-2 public results

* Will go in a bit more detail for this important systematic



Jet energy scale

Fractional JES uncertainty
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Absolute “in-situ” JES
- low-medium p_ from Z+jets balance study

dominated by generator differences, pile-up rejection, radiation
overall expect improvements to balance challenges — keep same

- high-p. dominated by photon energy scale in y+jets balance

Expect better accuracy with large statistics — halved

Other components will be neglected, based on current experience



Jet energy scale

Fractional JES uncertainty
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- dominated by statistics and simulation modeling
- in this case it was felt advances in modeling can be substantial
- Expect it will become negligible — 0



Jet energy scale

Fractional JES uncertainty
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 Flavor composition and response

- mainly comes from how generators model gluon jet radiation
- rely on fragmentation measurements and re-tuning of parton

shower generators
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- Propose to have two scenarios:

e Optimistic — halved
 Baseline — keep same
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Jet energy scale

Fractional JES uncertainty
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— single particle response but kicks

in when we run out of statistics
in the multijet balance

- expect large statistics will allow

us to make this negligible — 0
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Jet energy scale

Fractional JES uncertainty
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« Overall we have now a clear recipe to scale all individual nuisance
parameters for run-2 extrapolations

* We will then produce “summary” plots (like the ones above) for
truth-based projections for which this is an important uncertainty

- Applied as additional shift to the true (smeared) value
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Jet Energy Resolution / MET
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MET systematics driven by object scale/resolution uncertainties

Soft-term uncertainties are rarely dominant and hard to extrapolate
— keep same

— discuss exceptions on a case-by-case
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Flavor tagging

« Data/MC scale-factor measured using in-situ techniques

Calibration method Dominating uncertainties

b-tagging ttbar PDF Modeling: Pythia vs PowHeg vs aMC@NLO..

Modeling: parton showering, matrix element,
ISR/FSR

Jet/MET reconstruction, modeling (c-flavor
decays), MC statistics

b-tagging ttbar tag-n-probe

c-tagging W+c

c-tagging ttbar>c Modeling, MC+data statistics, light tag SF

track uncertainties (IP, fakes), HF fraction,

mistag negative tagging MC+data statistics (low jet pT)

mistag adjusted MC track uncertainties (IP, fakes)

« Statistics-dominated uncertainties — 0
« MC modeling uncertainties — halved (optimistic) [,same (baseline)]
- currently mainly from generator comparisons
« Expect new methods to perform better at high-pT/n
- current uncertainties too large — under discussed (CMS?) 13



Tau
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Photon/Electrons

 |D efficiency for e/y already at 0.5% — keep same
- however low-p_ regime has larger uncertainties

1Y oo CHUREE R TR % e 557 e ST PO
 Energy scale calibration e R .
0.1%(0.2%) to 0.3%(0.5%) .
for e (y) — keep same 87
~ larger dataset will help in z O
monitoring detector stability ”J_O o
- expect to be able to mitigate '/ ATLAS Preliminary
larger pile-up effects ~0.004}- Electrons, n=0.3 i
— critical understanding of detector 2077407 60 80 100 120 140 160 180
seems difficult to go much furth Er [GeV]

* Energy resolution

- About 10% @ 60 GeV, ultimately dominated by basic detector
knowledge
- Pile-up modeling will play a role, but expect to mitigate it — keep same s



» Reconstruction + ID efficiency well known (~0.1%)
 Scale and resolution also well measured

* Most of these measurements are systematically limited but robust
against pile-up

« Baseline plan is to keep current uncertainties
- if a particular analysis is limited by this, can be revised
- note: measurements as m(W) will rely on dedicated low-u datasets

* Very high momentum muons (~TeV) have larger uncertainties

- under investigation impact on analyses (e.g. Z')

- if relevant, will probably try to be more optimistic than now
(e.g. assuming dedicated toroid-off runs for alignment, ...)
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Background modeling uncertainties

 MC modeling enters directly into uncertainties on backgrounds too

- likely too wide of a problem, it needs discussion on a case-by-case

— or could attempt to define a common assumption?
— as-is vs 72 comparison

« Data-driven background can be limited by

- statistics in control region — will get better with ~sqrt(L)
- closure of method — harder to improve, keep same

« MC statistical uncertainty is assumed — 0

« Reality is less black&white than above and requires some
judgments to be done on a case by case, but guidelines above
could still be useful

17



Conclusions

* Wide range of experimental systematics, but no need to cover all

« Extrapolation of existing analyses:

— assumption on scaling of systematics as nuisance parameters
— care to be taken to ensure no over-constraint, if it happens can
think of applying scaling “post-fit” (manually)
e Truth-based analyses:

- simplified parametrization vs pT, 1, ... for dominant uncertainties

» Overall approach philosophy (with exceptions) for discussion:

- statistical (data/MC) uncertainty usually — 0
- physics simulation modeling — %2 (comparing w/ no scaling)

- often new methods are expected to compensate for increased pile-
up effects

18
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