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1 Complex numbers

A complex number is a number that can be expressed in the form a+ bi, where a and b are real numbers, and
i is a solution of the equation x2 = −1. This can be written as follows:

C =
{
a+ bi | a, b ∈ R, i =

√
−1
}

The complex number system can be defined as the algebraic extension of the ordinary real numbers by an
imaginary number i, this means that complex numbers can be added, subtracted, and multiplied, as polynomials
in the variable i. Furthermore, complex numbers can also be divided by nonzero complex numbers. Overall,
the complex number system is a field.

Definition 1.1. A field is a set F together with two operations called addition (+) and multiplication (·),
required to satisfy the following properties:

1. Associativity of addition and multiplication: a+ (b+ c) = (a+ b) + c and (a · b) · c = a · (b · c) ∀a, b, c ∈ F

2. Commutativity of addition and multiplication: a+ b = b+ a and a · b = b · a ∀a, b ∈ F

3. Additive and multiplicative identity.
There will exist two different elements in F such as:

• The additive identity, denoted by 0, will satisfy a+ 0 = a ∀a ∈ F

• The multiplicative identity, denoted by 1, will satisfy a · 1 = a ∀a ∈ F

4. Additive and multiplicative inverses:

• For every a 6= 0 ∈ F there exists an element in F , denoted by −a, such that a+ (−a) = 0.

• For every a 6= 0 ∈ F there exists an element in F , denoted by
1

a
or a−1, such that a · a−1 = 1

5. Distributivity of multiplication over addition: a · (b+ c) = (a · b) + (a · c) ∀a, b, c ∈ F

Examples of fields are: R,Q,C but not Z.

Theorem 1.1. Fundamental Theorem of Algebra
Every nonconstant polynomial equation having complex coefficients has at least one complex root.

A field with the property that every nonconstant polynomial with coefficients in has a root in is called
algebraically closed, so the fundamental theorem of algebra states that the complex field is algebraically
closed.

The theorem is equivalent to the following statement:
A polynomial P (x) of degree n has n values x1, ..., xn for which P (xi) = 0, ∀i ∈ 1, ..., n. Those values are
called polynomial roots.

1.1 Representation

Complex numbers can be expressed using different notations. Some of them are:

• Cartesian form

• Polar form

• Exponential form

1.1.1 Cartesian form

Complex numbers can naturally be represented geometrically by points in the plane: The complex number
z = a+ bi is represented by the point (a, b) in cartesian coordinates as seen in the image below.

Nevertheless, it is also possible to take into account the vector that can be built from the origin to the point
(a, b), z. With the representation of the vector, it is easy to deduce that it is possible to represent this numbers
by using polar coordinates, defining the angle of rotation θ and the length of the vector |z|.

1



y = Im(z)

x = Re(z)

z = a + bi

|z|

a

b

θ

(a,b)
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1.1.2 Polar form

Using our trigonometrical knowledge it is possible to see that we have everything we need in the image above
to represent a complex number in polar coordinates. We have the modulus or absolute value:

|z| := r =
√
a2 + b2

We call θ the polar angle or the argument of a + bi. The modulus, or absolute value is determined by a + bi
but the polar angle is not since it can be increased by any integer multiple of 2π. To make θ unique, one can
specify:

0 ≤ θ < 2π

In this case:

θ = arg(z) = arctan−1
(
b

a

)
Changing between cartesian and polar representation of complex numbers is essentially the same as changing
between cartesian and polar coordinates.

Using the following equations that can be deduced from the expressions above:

cos θ =
a

r
→ a = r cos θ

sin θ =
b

r
→ b = r sin θ

We can now build the polar representation of a complex number:

z = a+ bi = r cos θ + r sin θ · i = r(cos θ + i sin θ)

1.2 Euler’s formula

If we take a step further, we can still modify this polar representation into a more interesting equation, using
the following statement:

eiθ = cos θ + i sin θ Euler’s formula (1)

The Euler equation should be regarded as the definition of the exponential of an imaginary power. To better
see how these two entities (the sum of sin and cosine and the exponential) are related, we have to check the
infinite Taylor series of the exponential function:

et = 1 +
t

1!
+
t2

2!
+
t3

3!
+ ...

Substituting t by iθ in the series:

eiθ = 1 +
iθ

1!
+

(iθ)2

2!
+

(iθ)3

3!
+ ...

And remembering that i2 = −1, i3 = −i, i4 = 1, i5 = i and so on, we get:

eiθ =

(
1− θ2

2!
+
θ4

4!
− ...

)
+ i

(
θ − θ3

3!
+
θ5

5!
− ...

)
= cos(θ) + i sin(θ)

in view of the infinite series representations for cos(θ) and sin(θ). This is not a proof since we only know that the
series expansion for et is valid when t is a real number, but it shows that Euler’s formula is formally compatible
with the series expansions.

Now we can define the exponential representation:

z = a+ bi = reiθ
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2 Differential Equations

2.1 Preliminaires

Definition 2.1. We call a differential equation to any equation containing derivatives, either ordinary (one
variable) or partial (several variables).

In applications, the functions usually represent physical quantities, the derivatives represent their rates of change
and the equation defines a relationship between the two.

Notation. The time derivative notation in physics is usually ẋ in addition to the Leibniz’s notation:
dx

dt

Definition 2.2. The order of a differential equation is the order of the highest derivative in the equation

Differential equations can be divided into several types. Apart from describing the properties of the equation
itself, these classes of differential equations can help inform the choice of approach to a solution. Between all
the possible types of differential equations we would like to highlight the following ones to get a general vision
of the main types:

1. Ordinary differential equations vs Partial differential equations

Definition 2.3. If a differential equation contains derivatives respect to a unique independent variable,
then it is called ordinary differential equation

Example 2.1. These are examples of ordinary differential equations with only derivatives respect to the
”x” independent variable.

dy

dx
− 4y = 2 (2)

(x+ 2y)dx = 3ydy = 0 (3)

Definition 2.4. If a differential equation contains derivatives respect to two or more independent variables
then it is called partial differential equation

Example 2.2. These are examples of partial differential equations with derivatives respect to different
independent variables.

x
∂u

∂x
+ y

∂u

∂y
= u (4)

∂3u

∂x3
=
∂2u

∂t2
= 4

∂u

∂t
(5)

2. Linear differential equations vs Non-linear

Definition 2.5. A differential equation is linear if it can be written in the following way:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x)

This means, if the differential equation is defined by a linear polynomial in the unknown function and its
derivatives. Any other equation not satisfying this definition is considered to be non-linear

Example 2.3. Linear:
y′′ − 2y = ln(x)

Non-linear:
3 + yy′ = x− y

3. Homogeneous vs Inhomogeneous

Definition 2.6. A differential equation is homogeneous if in the previous definition, the term g(x) = 0.
Otherwise, the equation is considered non-homogeneous.
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2.2 Solution of a differential equation

To solve a differential equation we should first define what would be a solution and for this purpose we will
need some additional definitions.

Definition 2.7. A function f is continuous in x = x0 if the three following statements are true:

i) f(x0) is defined.

ii) limx→x0 f(x) exists.

iii) f(x0) = limx→x0 f(x)

A function f is said to be continuous on an interval I if it is continuous at each point x in I. Some other
properties are related to continuity:

• The sum, difference and product of continuous functions is continuous.

• The quotient of continuous functions is continuous at all points where the denominator is not zero.

• The composition of continuous functions is continuous at all points where the composition is properly
defined.

Example 2.4. Any polinomial is continuous for all values of x. For instance: f(x) = x4 + 7x2 − 3. The
functions f(x) = ex, f(x) = sin(x) and f(x) = cos(x) are continuous in R.

Example 2.5. The function f(x) =
1

x− 1
is not continuous in x = 1.

The function

f(x) =


x2 for x < 1

0 for x = 1

2− (x− 1)2 for x > 1

is not continuous in x = 1.

If you are interested, the discontinuities are classificated into several types, but we are not going to review them
here.

Definition 2.8. A function of one real variable is differentiable if its derivative exists at each point in its
domain. As a result, the graph of a differentiable function must have a (non-vertical) tangent line at each point
in its domain, be relatively smooth, and cannot contain any breaks, bends, or cusps.

Definition 2.9. In calculus, an antiderivative, primitive function or primitive integral of a function f is a
differentiable function F whose derivative is equal to the original function f .

Definition 2.10. A solution of a differential equation of order n consists of a function defined and n-times
differentiable on a domain D having the property that the functional equation obtained by substituting the
function and its n derivatives into the differential equation holds for every point in D. This means that, to find
the solution of a differential equation, we need to find the primitive of the function by using integrals.

A Very Easy Example. To start easily, let’s study the following differential equation:

y′ = 6x =⇒ dy

dx
= 6x =⇒ dy = 6x dx

The order of this equation is one as we only find the first derivative of y in the equation. Then we should find
a function defined and at least one time differentiable in R. We apply integrals to both sides of the equality to
find this function:

∫
dy =

∫
6xdx =⇒ y =

∫
6xdx = 6

∫
x dx

=⇒ y = 3x2 + C
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As your first exercise, you can verify this is actually a solution of the differential equation presented.

2.3 Explicitly Solvable First Order Differential Equations

In this chapter we will introduce the first order differential equations and several type of it that can be solved
explicitly using integration methods covered in standard Calculus course.

2.3.1 Separable equations

If we have the differential equation:
g(x) = h(y)y′

Formally, we could write:

g(x) dx = h(y) dy

If we suppose G a primitive of g and H a primitive of h, integrating in the equation above we would have that

G(x) = H(y) + C is the general solution of the equation.

Example 2.6.
dy

dx
+ (sinx)y = 0

Rearranging the terms we can see it is a separable equation:

dy

y
= − sin(x) dx

So let’s apply what we learned!∫
1

y
dy = −

∫
sinxdx =⇒ log |y| = cosx+ C

=⇒ y = ecos(x)+C = ecos(x)eC =⇒ y = Kecos(x) ∀K ∈ R

It is possible that your problem has some initial conditions that helps us to have a particular solution of the
equation (These problems are called Initial Value Problem). For example:

Example 2.7. Find the unique solution of the previous differential equation taking into account y
(π

2

)
= 2 .

y = Kecos(x) =⇒ y(0) = Ke
cos

(π
2

)
= 2 =⇒ K = 2 =⇒ y = 2ecos(x)

2.3.2 Convertible to separable

There are some equations that seems not separable at first but we can easily convert them to use the same
method before. These equations have the following structure:

y′ = f(ax+ by)

If a = 0 or b = 0, then the equation is already separable. Otherwise, we apply the change of variables z = ax+by.

Example 2.8. Solve y′ − exey = −1

y′ − exey = −1 =⇒ y′ + 1 = ex+y

Applying as suggested the change of variables z = x+ y =⇒ y = z − x and then y′ = z′ − 1. Substituting in
the equation, we transform it and now have a differential equation in z.

z′ = ez

And now we can solve it using the separable equations method. Solve it as an exercise and check that the

general solution should be y = −log(C − x)− x
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2.3.3 Exact equations

Let D ⊂ R2 be a domain and let us consider the following equation:

P (x, y) dx+Q(x, y) dy = 0

where P,Q : D → R are given continuous functions and Q(x, y) 6= 0. This equation is said to be an exact
differential equation if there exists a function F : D → R, F ∈ C1(D) such that:

dF (x, y) = P (x, y) dx+Q(x, y) dy

Notice that F is called a first integral of the differential equation and we have:
∂F

∂x
(x, y) = P (x, y)

∂F

∂y
(x, y) = Q(x, y)

(6)

In this case, the equation takes the form: dF (x, y) = 0. If the function y(x) is a solution then dF (x, y(x)) = 0
and consequently F (x, y(x)) = C, C ∈ R.

Because of the nature of the equation, there is a test we can do to any equation to check if it is exact or not.

Although here the details are not going to be explained, the following equality should be true:
∂P

∂y
=

∂Q

∂x
.

Example 2.9. Solve 3y + ex + (3x+ cos y)y′ = 0

Let’s find which part would be P (x, y) and which would be Q(x, y). The equation above could be written as:

dy

dx
= − 3y + ex

3x+ cos(y)
=⇒ P (x, y) = 3y + ex, Q(x, y) = 3x+ cos(y)

Applying our test to check if the equation is exact we see that indeed Py = Qx = 3, then it is an exact equation.
Let’s start to compute the solution:

∂F

∂x
(x, y) = 3y + ex =⇒ F =

∫
3y + exdx =⇒ F = 3xy + ex + ϕ(y)

Where ϕ(y) is a constant in the previous integral. At the same time, if we derive our ”proposed” F respect to
y, it should be equal to Q(x, y), thus:

∂F

∂y
(x, y) = 3x+ ϕ′(y) = 3x+ cos y = Q(x, y) =⇒ ϕ′(y) = cos y =⇒ ϕ(y) = sin y

Then, we have our function F , and then our general solution:

F (x, y) = 3xy + ex + sin y = C

2.3.4 Reductible to exact: Integrating factors

If P (x, y) dx+Q(x, y) dy = 0 is not exact, we can still find a function µ(x, y) such as:

µ(x, y)P (x, y) dx+ µ(x, y)Q(x, y) dy = 0

is exact.

Let’s imagine that µ(x, y) only depends on variable x, this is µ(x, y) = µ(x). To be exact, the equation should
verify:

∂

∂y
(µ(x)P (x, y)) =

∂

∂x
(µ(x)Q(x, y)) =⇒ µ(x)Py(x, y) = µ′(x)Q(x, y) + µ(x)Qx(x, y)
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µ′(x)

µ(x)
=
Py(x, y)−Qx(x, y)

Q(x, y)
= h(x)

Then, the integrating factor would be:
µ(x) = e

∫
h(x)dx

The same argumentation could be followed in case of an integrating factor µ(y) or µ(xy), µ(x+y), etc. Precisely,
in the case the integrating factor only depends on y, it will be:

µ(y) = e
∫
h(y)dy, h(y) =

Qx − Py
P

Example 2.10. Solve (2x2 + y) dx+ (x2y − x) dy = 0

As it can be seen:
Py = 1 6= 2xy − 1 = Qx

Let’s try to find an integrating factor µ(x):

µ(x) = e
∫
h(x), h(x) =

1− (2xy − 1)

x2y − x
=
−2

x

µ(x) =
1

x2

Then, as an exercise for the lector, it is possible to verify the fact that multiplying by the integrating factor the
new equation is exact.

2.3.5 First order linear equations

The equation:
y′ + a(x)y = b(x)

can be solved using three different methods:

(i) Find an integrating factor of the form µ(x). By writing the equation above in the following manner:

(a(x)y − b(x)) dx+ dy = 0

then we can denote P (x, y) = a(x)y − b(x) and Q(x, y) = 1, with a(x) =
Py −Qx

Q
and integrating factor

µ(x) = exp
(∫
a(x) dx

)
.

(ii) The second method to resolve this equation would be solving first the lineal homogeneous equation
associated (b(x) = 0). This is a separable equation as we can write in an equivalent way:

y′ + a(x)y = 0 =⇒ dy

y
= −a(x) dx =⇒ y = C exp

(
−
∫

(a(x) dx

)
Then we can apply the variation of constants method to find the solution to the non-homogeneous equation.

The variation of constants method: Substitute C by C(x) in the general solution and then apply this
solution into the differential equation. This leads us to have:

C(x) =

∫
b(x) exp

(∫
(a(x) dx

)
+ C

(iii) The third procedure would be to use a particular solution of the differential equation yp(x) we have already
found. Then, the general solution will be:

y = yp + C exp

(
−
∫
a(x) dx

)
The proof of this result will be left as an exercise for the reader.
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(iv) The last possible method to solve this kind of equations would be to perform a decomposition y(x) =
u(x)v(x). Then when derivating: y′ = u′v + uv′, and if we substitute that into the equation:

u′v + uv′ + a(x)uv = b(x) =⇒ u′v + (v′ + a(x)v)u = b(x)

Then we are going to choose v(x) such as the coefficient of u is zero, this means that we are going to
resolve v′ + a(x)v = 0, a separable equation with solution:

v(x) = exp

(
−
∫
a(x)dx

)
We already have v(x), now we have to find u(x) using u′v = b(x) and this leads us to:

u(x) =

∫
b(x) exp

(∫
a(x) dx

)
dx+ C

All these methods are going to give us the same solution for the same equation, so you can choose the one you
like the most. The best thing is that you don’t have to memorize the formula, it is enough to remember which
approach to use.

Exercise 2.1. Solve 2xy′ − 3y = 4x2 using the four methods above and verify you get the same solution in all
of them. (Solution:y = Cx3/2 + 4x2)
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