Continuity (exercises with detailed solutions)

- 1. Verify that $f(x) = \sqrt{x}$ is continuous at x_0 for every $x_0 \ge 0$.
- 2. Verify that $f(x) = \frac{1}{x} \frac{1}{x_0}$ is continuous at x_0 for every $x_0 \neq 0$.
- 3. Draw the graph and study the discontinuity points of $f(x) = [\sin x]$.
- 4. Draw the graph and study the discontinuity points of $f(x) = \sin x [\sin x]$.
- 5. Draw the graph and study the discontinuity points of $f(x) = \frac{2x^2 5x 3}{x^2 4x + 3}$.
- 6. Draw the graph and study the discontinuity points of $f(x) = \frac{x+3}{3x^2+x^3}$.
- 7. Find $k \in \mathbb{R}$ such that the function

$$f(x) = \begin{cases} 2x^2 + 4x, & \text{if } x \ge 1\\ -x + k, & \text{if } x < 1 \end{cases}$$

is continuous on \mathbb{R} .

8. Find $a, b \in \mathbb{R}$ such that the function

$$f(x) = \begin{cases} \log(1+x), & \text{if } -1 < x \le 0\\ a \sin x + b \cos x & \text{if } 0 < x < \frac{\pi}{2}\\ x & \text{if } x \ge \frac{\pi}{2} \end{cases}$$

is continuous on its domain.

9. Determine the domain and study the continuity of the function $f(x) = \frac{\log(1+x^2)}{\sqrt{3-\sin x}}$. 10. Draw the graph and study the continuity of the function

$$f(x) = \begin{cases} x \left[\frac{1}{x}\right], & \text{if } x \neq 0\\ 1, & \text{if } x = 0 \end{cases}$$

11. Draw the graph and study the continuity of the function

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{if } x \neq 0\\ 1, & \text{if } x = 0. \end{cases}$$

Solutions

1. In order to verify that $f(x) = \sqrt{x}$ is continuous at x_0 , with $x_0 \ge 0$, we try to find an upper bound for f(x) dependent on the difference $x - x_0$. We obtain

$$\sqrt{x} - \sqrt{x_0} = \frac{(\sqrt{x} - \sqrt{x_0})(\sqrt{x} - \sqrt{x_0})}{\sqrt{x} + \sqrt{x_0}} = \frac{x - x_0}{\sqrt{x} + \sqrt{x_0}}.$$

Since $\sqrt{x} \ge 0$ for every $x \ge 0$ we have

$$|\sqrt{x} - \sqrt{x_0}| = \frac{|x - x_0|}{\sqrt{x} + \sqrt{x_0}} \le \frac{|x - x_0|}{\sqrt{x_0}}$$

We now fix $\varepsilon > 0$, and we want to determine $\delta > 0$, such that if $|x - x_0| < \delta$ then $|f(x) - f(x_0)| < \varepsilon$. From the previous inequality we have that we must find $\delta > 0$, such that if $|x - x_0| < \delta$ then

$$\frac{|x - x_0|}{\sqrt{x_0}} < \varepsilon$$

The last inequality is equivalent to $|x - x_0| < \sqrt{x_0}\varepsilon$, hence we choose $\delta \leq \sqrt{x_0}\varepsilon$.

2. As in exercise 1 we have to find an upper bound for $f(x) - f(x_0)$, dependent on the difference $x - x_0$ or with a function of $x - x_0$. We have

$$\frac{1}{x} - \frac{1}{x_0} = \frac{x_0 - x}{xx_0}.$$

If $x_0 > 0$ (when $x_0 < 0$ we proceed in the same way), then for every $x \in I = [x_0/2, 3/2x_0]$ we have

$$x \cdot x_0 > \frac{x_0}{2} \cdot x_0 = \frac{x_0^2}{2} \quad \Rightarrow \quad \left|\frac{1}{x} - \frac{1}{x_0}\right| = \frac{|x_0 - x|}{xx_0} < 2\frac{|x_0 - x|}{x_0^2}.$$

Hence, fixed $\varepsilon > 0$, if we find $\delta > 0$ such that $|x - x_0| < \delta$ implies $2\frac{|x_0 - x|}{x_0^2} < \varepsilon$, we have finished. This condition is equivalent to $|x - x_0| < \varepsilon \frac{x_0^2}{2}$, and the last inequality is satisfied for every $x \in I$ if we take $\delta \leq \min\{\varepsilon \frac{x_0^2}{2}, \frac{x_0}{2}\}$.

- 3. Since $\sin x$ is 2π -periodic, f is also 2π -periodic. We then study f only on the interval $[-\pi,\pi]$. Since [n] = n for every $n \in \mathbb{Z}$, then $f(x) = \sin x$ when $x = -\pi, -\pi/2, 0, \pi/2, \pi$. Furthermore [y] = 0 for every $y \in [0, 1[$, hence f(x) = 0 for every x such that $\sin x \in [0, 1[$, that is for every $x \in [0, \pi] \setminus \{\pi/2\}$.
 - Similarly, since [y] = -1 for every $y \in [-1, 0]$, we have f(x) = -1 for every x such that $\sin x \in [-1, 0]$, that is for every $x \in]-\pi, 0[$.

We can then draw the graph of f. At $\pm \pi$ and 0 has a discontinuity f of the first kind, indeed

$$\lim_{x \to \pm \pi^-} f(x) = 0, \qquad \lim_{x \to \pm \pi^+} f(x) = -1, \qquad \lim_{x \to 0^-} f(x) = -1, \qquad \lim_{x \to 0^+} f(x) = 0,$$

At $x_0 = \pi/2$ f we have

$$\lim_{x \to \frac{\pi}{2}} f(x) = 0 \quad \text{and} \quad f\left(\frac{\pi}{2}\right) = 1$$

hence we can extend f at $\pi/2$ to a continuous function.

4. f is 2π -periodic and we study it on $[-\pi, \pi]$. To draw its graph we observe that f(n) = 0, $\forall n \in \mathbb{Z}$, hence f(x) = 0 for every x such that $\sin x \in \mathbb{Z}$, that is when $x = -\pi, -\pi/2, 0, \pi/2, \pi$. Furthermore, since if $y \in]0, 1[$ we have y - [y] = y, then for every $x \in]0, \pi[\setminus \{\pi/2\},$ we have $f(x) = \sin x$. Since if $y \in]-1, 0[$ we have y - [y] = y + 1, for every $x \in]\pi, 0[\setminus \{-\pi/2\},$ we have $f(x) = \sin x + 1$. Hence in $x = \pi, 0, \pi/2, \pi f$ has a discontinuity of the first kind, indeed

$$\lim_{x \to \pm \pi^-} f(x) = 0, \qquad \lim_{x \to \pm \pi^+} f(x) = 1, \qquad \lim_{x \to 0^-} f(x) = 1, \qquad \lim_{x \to 0^+} f(x) = 0.$$

At $x = \frac{\pi}{2}$, f can be extended to a continuous function since

$$\lim_{x \to \frac{\pi}{2}} f(x) = 1, \quad \text{and} \quad f\left(\frac{\pi}{2}\right) = 0.$$

5. dom $(f) = \mathbb{R} \setminus \{1, 3\}$. Since the numerator vanishes when x = 3 we can simplify the fraction to obtain, for every $x \in \mathbb{R} \setminus \{1, 3\}$

$$f(x) = \frac{(x-3)(2x+1)}{(x-3)(x-1)} = \frac{2x+1}{x-1} = 2 + \frac{3}{x-1}.$$

The graph of f can be obtained from the graph of g(x) = 1/x with some translations and rescaling. At x = 3 we can extend f to a continuous function, indeed $3 \notin \text{dom}(f)$ but

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \left(2 + \frac{3}{x - 1} \right) = \frac{7}{2}.$$

When x = 1, we have

$$\lim_{x \to 1^-} f(x) = -\infty, \qquad \lim_{x \to 1^+} f(x) = +\infty.$$

Thus x = 1 is a discontinuity point of the second kind.

6. dom $(f) = \mathbb{R} \setminus \{-3, 0\}$, and for every $x \in \text{dom}(f)$ we have $f(x) = 1/x^2$. Hence we have

$$\lim_{x \to -3} f(x) = \frac{1}{9}, \quad \lim_{x \to 0} f(x) = +\infty.$$

we can extend f in x = -3 to a continuous function; x = 0 is a discontinuity point of the second kind.

7. f is continuous for every $x \neq 1$, since it is a composition of continuous functions. Hence we just study the continuity of f in x = 1. f is continuous in x = 1 if both limits

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (-x+k) = k-1, \qquad \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (2x^{2}+4x) = 6$$

are equal to f(1) = 6. We then impose k - 1 = 6 that is k = 7.

8. dom(f) =] −1, +∞[. Furthermore on] −1,0[,]0, ^π/₂[,]^π/₂, +∞[the function f(x) is continuous because it is a composition of continuous functions. We then study the continuity of f at x = 0 and x = ^π/₂. We have

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \log(1+x) = 0, \quad \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (a \sin x + b \cos x) = b.$$

Hence f is continuous at 0 if and only if b = 0. Furthermore

$$\lim_{x \to \frac{\pi}{2}^{-}} f(x) = \lim_{x \to \frac{\pi}{2}^{-}} (a \sin x + b \cos x) = a, \quad \lim_{x \to \frac{\pi}{2}^{-}} f(x) = \lim_{x \to \frac{\pi}{2}^{-}} x = \frac{\pi}{2}$$

hence f is continuous in $x = \pi/2$ if and only if $a = \pi/2$.

- 9. dom $(f) = \mathbb{R}$, indeed for every $x \in \mathbb{R}$ we have $1 + x^2 \ge 1 > 0$ and $3 \sin x \ge 2 > 0$. For every $x \in \mathbb{R}$ f is continuous since it is a composition of continuous functions.
- 10. f is not continuous when x = 1/n, for every $n \in \mathbb{Z} \setminus \{0\}$. These points are discontinuities of the first kind. When $x \neq 1/n$, f is continuous.
- 11. f is continuous when $x \neq 0$; at 0 we have

$$\lim_{x \to 0} f(x) = 0, \qquad f(0) = 1.$$

hence we can extend f to a continuous function on the whole \mathbb{R} .

