
Continuity (exercises with detailed solutions)

1. Verify that f(x) =
√

x is continuous at x0 for every x0 ≥ 0.

2. Verify that f(x) =
1
x
− 1

x0
is continuous at x0 for every x0 6= 0.

3. Draw the graph and study the discontinuity points of f(x) = [sin x].

4. Draw the graph and study the discontinuity points of f(x) = sin x− [sin x].

5. Draw the graph and study the discontinuity points of f(x) =
2x2 − 5x− 3
x2 − 4x + 3

.

6. Draw the graph and study the discontinuity points of f(x) =
x + 3

3x2 + x3
.

7. Find k ∈ R such that the function

f(x) =
{

2x2 + 4x, if x ≥ 1
−x + k, if x < 1

is continuous on R.

8. Find a, b ∈ R such that the function

f(x) =





log(1 + x), if −1 < x ≤ 0
a sin x + b cosx if 0 < x < π

2
x if x ≥ π

2

is continuous on its domain.

9. Determine the domain and study the continuity of the function f(x) =
log(1 + x2)√

3− sin x
.

10. Draw the graph and study the continuity of the function

f(x) =





x

[
1
x

]
, if x 6= 0

1, if x = 0.

11. Draw the graph and study the continuity of the function

f(x) =

{
x sin

1
x

, if x 6= 0
1, if x = 0.
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Solutions

1. In order to verify that f(x) =
√

x is continuous at x0, with x0 ≥ 0, we try to find an upper bound for
f(x) dependent on the difference x− x0. We obtain

√
x−√x0 =

(
√

x−√x0)(
√

x−√x0)√
x +

√
x0

=
x− x0√
x +

√
x0

.

Since
√

x ≥ 0 for every x ≥ 0 we have

|√x−√x0| = |x− x0|√
x +

√
x0

≤ |x− x0|√
x0

.

We now fix ε > 0, and we want to determine δ > 0, such that if |x − x0| < δ then |f(x) − f(x0)| < ε.
From the previous inequality we have that we must find δ > 0, such that if |x− x0| < δ then

|x− x0|√
x0

< ε.

The last inequality is equivalent to |x− x0| < √
x0ε, hence we choose δ ≤ √

x0ε.

2. As in exercise 1 we have to find an upper bound for f(x)− f(x0), dependent on the difference x− x0 or
with a function of x− x0. We have

1
x
− 1

x0
=

x0 − x

xx0
.

If x0 > 0 (when x0 < 0 we proceed in the same way), then for every x ∈ I =]x0/2, 3/2x0[ we have

x · x0 >
x0

2
· x0 =

x2
0

2.
⇒

∣∣∣ 1
x
− 1

x0

∣∣∣ =
|x0 − x|

xx0
< 2

|x0 − x|
x2

0

.

Hence, fixed ε > 0, if we find δ > 0 such that |x − x0| < δ implies 2 |x0−x|
x2
0

< ε, we have finished. This

condition is equivalent to |x − x0| < ε
x2
0
2 , and the last inequality is satisfied for every x ∈ I if we take

δ ≤ min{εx2
0
2 , x0

2 }.
3. Since sin x is 2π-periodic, f is also 2π-periodic. We then study f only on the interval [−π, π]. Since

[n] = n for every n ∈ Z, then f(x) = sinx when x = −π,−π/2, 0, π/2, π. Furthermore [y] = 0 for every
y ∈ [0, 1[, hence f(x) = 0 for every x such that sin x ∈ [0, 1[, that is for every x ∈ [0, π] \ {π/2}.
Similarly, since [y] = −1 for every y ∈ [−1, 0[, we have f(x) = −1 for every x such that sin x ∈ [−1, 0[,
that is for every x ∈]− π, 0[.

We can then draw the graph of f . At ±π and 0 has a discontinuity f of the first kind, indeed

lim
x→±π−

f(x) = 0, lim
x→±π+

f(x) = −1, lim
x→0−

f(x) = −1, lim
x→0+

f(x) = 0,

At x0 = π/2 f we have
lim

x→π
2

f(x) = 0 and f
(π

2

)
= 1

hence we can extend f at π/2 to a continuous function.

4. f is 2π-periodic and we study it on [−π, π]. To draw its graph we observe that f(n) = 0, ∀n ∈ Z, hence
f(x) = 0 for every x such that sin x ∈ Z, that is when x = −π,−π/2, 0, π/2, π. Furthermore, since if
y ∈]0, 1[ we have y − [y] = y, then for every x ∈]0, π[\{π/2}, we have f(x) = sin x. Since if y ∈]− 1, 0[ we
have y− [y] = y + 1, for every x ∈]π, 0[\{−π/2}, we have f(x) = sin x + 1. Hence in x = π, 0, π/2, π f has
a discontinuity of the first kind, indeed

lim
x→±π−

f(x) = 0, lim
x→±π+

f(x) = 1, lim
x→0−

f(x) = 1, lim
x→0+

f(x) = 0.
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At x = π
2 , f can be extended to a continuous function since

lim
x→π

2

f(x) = 1, and f
(π

2

)
= 0.

5. dom(f) = R \ {1, 3}. Since the numerator vanishes when x = 3 we can simplify the fraction to obtain, for
every x ∈ R \ {1, 3}

f(x) =
(x− 3)(2x + 1)
(x− 3)(x− 1)

=
2x + 1
x− 1

= 2 +
3

x− 1
.

The graph of f can be obtained from the graph of
g(x) = 1/x with some translations and rescaling. At
x = 3 we can extend f to a continuous function,
indeed 3 /∈ dom(f) but

lim
x→3

f(x) = lim
x→3

(
2 +

3
x− 1

)
=

7
2
.

When x = 1, we have

lim
x→1−

f(x) = −∞, lim
x→1+

f(x) = +∞.

Thus x = 1 is a discontinuity point of the second
kind.
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6. dom(f) = R \ {−3, 0}, and for every x ∈ dom(f) we
have f(x) = 1/x2. Hence we have

lim
x→−3

f(x) =
1
9
, lim

x→0
f(x) = +∞.

we can extend f in x = −3 to a continuous function;
x = 0 is a discontinuity point of the second kind.
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7. f is continuous for every x 6= 1, since it is a composition of continuous functions. Hence we just study the
continuity of f in x = 1. f is continuous in x = 1 if both limits

lim
x→1−

f(x) = lim
x→1−

(−x + k) = k − 1, lim
x→1+

f(x) = lim
x→1+

(2x2 + 4x) = 6

are equal to f(1) = 6. We then impose k − 1 = 6 that is k = 7.

8. dom(f) =] − 1, +∞[. Furthermore on ] − 1, 0[, ]0, π
2 [, ]π

2 , +∞[ the function f(x) is continuous because it
is a composition of continuous functions. We then study the continuity of f at x = 0 and x = π

2 .

We have
lim

x→0−
f(x) = lim

x→0−
log(1 + x) = 0, lim

x→0−
f(x) = lim

x→0−
(a sin x + b cosx) = b.

Hence f is continuous at 0 if and only if b = 0. Furthermore

lim
x→π

2
−

f(x) = lim
x→π

2
−
(a sinx + b cos x) = a, lim

x→π
2
−

f(x) = lim
x→π

2
−

x =
π

2
,
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hence f is continuous in x = π/2 if and only if a = π/2.

9. dom(f) = R, indeed for every x ∈ R we have 1 + x2 ≥ 1 > 0 and 3− sin x ≥ 2 > 0. For every x ∈ R f is
continuous since it is a composition of continuous functions.

10. f is not continuous when x = 1/n, for every n ∈ Z\{0}. These points are discontinuities of the first kind.
When x 6= 1/n, f is continuous.

11. f is continuous when x 6= 0; at 0 we have

lim
x→0

f(x) = 0, f(0) = 1.

hence we can extend f to a continuous function on
the whole R.
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