Continuity (exercises with detailed solutions)

1. Verify that $f(x)=\sqrt{x}$ is continuous at x_{0} for every $x_{0} \geq 0$.
2. Verify that $f(x)=\frac{1}{x}-\frac{1}{x_{0}}$ is continuous at x_{0} for every $x_{0} \neq 0$.
3. Draw the graph and study the discontinuity points of $f(x)=[\sin x]$.
4. Draw the graph and study the discontinuity points of $f(x)=\sin x-[\sin x]$.
5. Draw the graph and study the discontinuity points of $f(x)=\frac{2 x^{2}-5 x-3}{x^{2}-4 x+3}$.
6. Draw the graph and study the discontinuity points of $f(x)=\frac{x+3}{3 x^{2}+x^{3}}$.
7. Find $k \in \mathbb{R}$ such that the function

$$
f(x)= \begin{cases}2 x^{2}+4 x, & \text { if } x \geq 1 \\ -x+k, & \text { if } x<1\end{cases}
$$

is continuous on \mathbb{R}.
8. Find $a, b \in \mathbb{R}$ such that the function

$$
f(x)= \begin{cases}\log (1+x), & \text { if }-1<x \leq 0 \\ a \sin x+b \cos x & \text { if } 0<x<\frac{\pi}{2} \\ x & \text { if } x \geq \frac{\pi}{2}\end{cases}
$$

is continuous on its domain.
9. Determine the domain and study the continuity of the function $f(x)=\frac{\log \left(1+x^{2}\right)}{\sqrt{3-\sin x}}$.
10. Draw the graph and study the continuity of the function

$$
f(x)= \begin{cases}x\left[\frac{1}{x}\right], & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}
$$

11. Draw the graph and study the continuity of the function

$$
f(x)= \begin{cases}x \sin \frac{1}{x}, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}
$$

Solutions

1. In order to verify that $f(x)=\sqrt{x}$ is continuous at x_{0}, with $x_{0} \geq 0$, we try to find an upper bound for $f(x)$ dependent on the difference $x-x_{0}$. We obtain

$$
\sqrt{x}-\sqrt{x_{0}}=\frac{\left(\sqrt{x}-\sqrt{x_{0}}\right)\left(\sqrt{x}-\sqrt{x_{0}}\right)}{\sqrt{x}+\sqrt{x_{0}}}=\frac{x-x_{0}}{\sqrt{x}+\sqrt{x_{0}}} .
$$

Since $\sqrt{x} \geq 0$ for every $x \geq 0$ we have

$$
\left|\sqrt{x}-\sqrt{x_{0}}\right|=\frac{\left|x-x_{0}\right|}{\sqrt{x}+\sqrt{x_{0}}} \leq \frac{\left|x-x_{0}\right|}{\sqrt{x_{0}}}
$$

We now fix $\varepsilon>0$, and we want to determine $\delta>0$, such that if $\left|x-x_{0}\right|<\delta$ then $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$. From the previous inequality we have that we must find $\delta>0$, such that if $\left|x-x_{0}\right|<\delta$ then

$$
\frac{\left|x-x_{0}\right|}{\sqrt{x_{0}}}<\varepsilon
$$

The last inequality is equivalent to $\left|x-x_{0}\right|<\sqrt{x_{0}} \varepsilon$, hence we choose $\delta \leq \sqrt{x_{0}} \varepsilon$.
2. As in exercise 1 we have to find an upper bound for $f(x)-f\left(x_{0}\right)$, dependent on the difference $x-x_{0}$ or with a function of $x-x_{0}$. We have

$$
\frac{1}{x}-\frac{1}{x_{0}}=\frac{x_{0}-x}{x x_{0}}
$$

If $x_{0}>0$ (when $x_{0}<0$ we proceed in the same way), then for every $\left.x \in I=\right] x_{0} / 2,3 / 2 x_{0}$ [we have

$$
x \cdot x_{0}>\frac{x_{0}}{2} \cdot x_{0}=\frac{x_{0}^{2}}{2 .} \Rightarrow\left|\frac{1}{x}-\frac{1}{x_{0}}\right|=\frac{\left|x_{0}-x\right|}{x x_{0}}<2 \frac{\left|x_{0}-x\right|}{x_{0}^{2}} .
$$

Hence, fixed $\varepsilon>0$, if we find $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies $2 \frac{\left|x_{0}-x\right|}{x_{0}^{2}}<\varepsilon$, we have finished. This condition is equivalent to $\left|x-x_{0}\right|<\varepsilon \frac{x_{0}^{2}}{2}$, and the last inequality is satisfied for every $x \in I$ if we take $\delta \leq \min \left\{\varepsilon \frac{x_{0}^{2}}{2}, \frac{x_{0}}{2}\right\}$.
3. Since $\sin x$ is 2π-periodic, f is also 2π-periodic. We then study f only on the interval $[-\pi, \pi]$. Since $[n]=n$ for every $n \in \mathbb{Z}$, then $f(x)=\sin x$ when $x=-\pi,-\pi / 2,0, \pi / 2, \pi$. Furthermore $[y]=0$ for every $y \in[0,1[$, hence $f(x)=0$ for every x such that $\sin x \in[0,1[$, that is for every $x \in[0, \pi] \backslash\{\pi / 2\}$.
Similarly, since $[y]=-1$ for every $y \in[-1,0[$, we have $f(x)=-1$ for every x such that $\sin x \in[-1,0[$, that is for every $x \in]-\pi, 0[$.
We can then draw the graph of f. At $\pm \pi$ and 0 has a discontinuity f of the first kind, indeed

$$
\lim _{x \rightarrow \pm \pi^{-}} f(x)=0, \quad \lim _{x \rightarrow \pm \pi^{+}} f(x)=-1, \quad \lim _{x \rightarrow 0^{-}} f(x)=-1, \quad \lim _{x \rightarrow 0^{+}} f(x)=0
$$

At $x_{0}=\pi / 2 f$ we have

$$
\lim _{x \rightarrow \frac{\pi}{2}} f(x)=0 \quad \text { and } \quad f\left(\frac{\pi}{2}\right)=1
$$

hence we can extend f at $\pi / 2$ to a continuous function.
4. f is 2π-periodic and we study it on $[-\pi, \pi]$. To draw its graph we observe that $f(n)=0, \forall n \in \mathbb{Z}$, hence $f(x)=0$ for every x such that $\sin x \in \mathbb{Z}$, that is when $x=-\pi,-\pi / 2,0, \pi / 2, \pi$. Furthermore, since if $y \in] 0,1[$ we have $y-[y]=y$, then for every $x \in] 0, \pi[\backslash\{\pi / 2\}$, we have $f(x)=\sin x$. Since if $y \in]-1,0[$ we have $y-[y]=y+1$, for every $x \in] \pi, 0[\backslash\{-\pi / 2\}$, we have $f(x)=\sin x+1$. Hence in $x=\pi, 0, \pi / 2, \pi f$ has a discontinuity of the first kind, indeed

$$
\lim _{x \rightarrow \pm \pi^{-}} f(x)=0, \quad \lim _{x \rightarrow \pm \pi^{+}} f(x)=1, \quad \lim _{x \rightarrow 0^{-}} f(x)=1, \quad \lim _{x \rightarrow 0^{+}} f(x)=0 .
$$

At $x=\frac{\pi}{2}, f$ can be extended to a continuous function since

$$
\lim _{x \rightarrow \frac{\pi}{2}} f(x)=1, \quad \text { and } \quad f\left(\frac{\pi}{2}\right)=0
$$

5. $\operatorname{dom}(f)=\mathbb{R} \backslash\{1,3\}$. Since the numerator vanishes when $x=3$ we can simplify the fraction to obtain, for every $x \in \mathbb{R} \backslash\{1,3\}$

$$
f(x)=\frac{(x-3)(2 x+1)}{(x-3)(x-1)}=\frac{2 x+1}{x-1}=2+\frac{3}{x-1} .
$$

The graph of f can be obtained from the graph of $g(x)=1 / x$ with some translations and rescaling. At $x=3$ we can extend f to a continuous function, indeed $3 \notin \operatorname{dom}(f)$ but

$$
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3}\left(2+\frac{3}{x-1}\right)=\frac{7}{2}
$$

When $x=1$, we have

$$
\lim _{x \rightarrow 1^{-}} f(x)=-\infty, \quad \lim _{x \rightarrow 1^{+}} f(x)=+\infty
$$

Thus $x=1$ is a discontinuity point of the second kind.
6. $\operatorname{dom}(f)=\mathbb{R} \backslash\{-3,0\}$, and for every $x \in \operatorname{dom}(f)$ we have $f(x)=1 / x^{2}$. Hence we have

$$
\lim _{x \rightarrow-3} f(x)=\frac{1}{9}, \quad \lim _{x \rightarrow 0} f(x)=+\infty
$$

we can extend f in $x=-3$ to a continuous function; $x=0$ is a discontinuity point of the second kind.

7. f is continuous for every $x \neq 1$, since it is a composition of continuous functions. Hence we just study the continuity of f in $x=1 . f$ is continuous in $x=1$ if both limits

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(-x+k)=k-1, \quad \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(2 x^{2}+4 x\right)=6
$$

are equal to $f(1)=6$. We then impose $k-1=6$ that is $k=7$.
8. $\operatorname{dom}(f)=]-1,+\infty[$. Furthermore on $]-1,0[] 0,, \frac{\pi}{2}[,] \frac{\pi}{2},+\infty[$ the function $f(x)$ is continuous because it is a composition of continuous functions. We then study the continuity of f at $x=0$ and $x=\frac{\pi}{2}$.
We have

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \log (1+x)=0, \quad \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(a \sin x+b \cos x)=b
$$

Hence f is continuous at 0 if and only if $b=0$. Furthermore

$$
\lim _{x \rightarrow \frac{\pi}{2}^{-}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}^{-}}(a \sin x+b \cos x)=a, \quad \lim _{x \rightarrow \frac{\pi}{2}^{-}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}^{-}} x=\frac{\pi}{2}
$$

hence f is continuous in $x=\pi / 2$ if and only if $a=\pi / 2$.
9. $\operatorname{dom}(f)=\mathbb{R}$, indeed for every $x \in \mathbb{R}$ we have $1+x^{2} \geq 1>0$ and $3-\sin x \geq 2>0$. For every $x \in \mathbb{R} f$ is continuous since it is a composition of continuous functions.
10. f is not continuous when $x=1 / n$, for every $n \in \mathbb{Z} \backslash\{0\}$. These points are discontinuities of the first kind. When $x \neq 1 / n, f$ is continuous.
11. f is continuous when $x \neq 0$; at 0 we have

$$
\lim _{x \rightarrow 0} f(x)=0, \quad f(0)=1
$$

hence we can extend f to a continuous function on the whole \mathbb{R}.

