

The Mikowskian loop integrals are then the same as the Euclidian ones, up to a possible sign difference:

Particles

 $\int \frac{d^{o} k}{(2 \pi)^{\omega}} \frac{k^{2}}{\left(k^{2}-\Delta\right)^{n}}=\frac{(-(-)}{(4 \pi)^{n+1}} \frac{\omega}{2} \frac{\omega}{2} \frac{\mathrm{~T}\left(n-\frac{\omega}{2}-1\right)}{\Gamma(n)} \Delta^{\frac{n}{t+1}-n}$,
(B.25b) $\binom{d \geq 2 n-2}{d$ even }$=\mathrm{i} \frac{\mathrm{Q}^{\frac{d}{2}+1-n}}{(4 \pi)^{\frac{d}{2}}} \frac{\omega}{2} \frac{(-)^{\frac{d}{2}}}{(n-1)!\left(\frac{d}{2}+1-n\right)!}\left(\frac{1}{\epsilon}-\gamma_{E}+\sum^{\frac{d}{2}+1-n} \frac{1}{j}+\ln 4 \pi-\ln \Delta\right)$ $\int \frac{d^{\omega} k}{(2 \pi)^{4}} \frac{k^{4}}{\left(k^{2}-\Delta\right)^{n}}=\frac{\left(-\frac{1}{n}\right.}{(4 \pi)^{\frac{1}{2}} \frac{\omega(\omega+2)}{4} \frac{\Gamma\left(n-\frac{\omega}{2}-2\right)}{\Gamma(n)} \Delta^{\frac{\omega^{2}}{2}+2-n}}$
 We list some other common Minkowskian integrals:

$$
\begin{aligned}
& \int \frac{\mathrm{d}^{\omega} k}{(2 \pi)^{\omega}} \ln \left(k^{2}-a\right)=-\frac{\mathrm{i}}{(4 \pi)^{\frac{\omega}{2}}} \Gamma\left(-\frac{\omega}{2}\right) a^{\frac{\omega}{2}}, \\
& \int \frac{\mathrm{~d}^{\omega} k}{(2 \pi)^{\omega}} e^{a k^{2}-\mathrm{i} b \cdot k}=\frac{\mathrm{i}}{(4 \pi)^{\frac{\omega}{2}}} a^{-\frac{\omega}{2}} \mathrm{e}^{\frac{b^{2}}{4 a}} \\
& \int \frac{\mathrm{~d}^{\omega} k}{(2 \pi)^{\omega}} \frac{1}{\left(-k^{2}\right)^{\alpha}} \mathrm{e}^{-\mathrm{i} b \cdot k}=\frac{\mathrm{i}}{4^{\alpha} \pi^{\frac{\omega}{2}}} \frac{\Gamma\left(\frac{\omega}{2}-\alpha\right)}{\Gamma(\alpha)} \frac{1}{\left(-b^{2}\right)^{\frac{\omega}{2}-\alpha}}
\end{aligned}
$$

(B.26b)

Figure 9.6: In the dipole picture, the BFKL evolution is an evolution in dipoles, i.e. new dipoles are created during the evolution. A gluon that is radiated from the dipole can be represented as two fundamental lines (see Equation 10.13). This essentially splits the dipole in two at the point z_{1}, as is illustrated in
$\oint \mathrm{d} x$

$\operatorname{tr}\left(t^{a} t^{x} t^{b} t^{x}\right)=-\frac{1}{4 N_{c}} \delta^{a b}$,	
$\operatorname{tr}\left(t^{b} t^{x} t^{y}\right) f^{a y x}=-\mathrm{N} \frac{N_{c}}{4} \delta^{a b}$,	
$\operatorname{tr}\left(t^{y} t^{z}\right) f^{a x y} f^{b z x}=-\frac{N_{c}}{2} \delta^{a b}$,	
$f^{x a y} f^{y c z} f^{z b w} f^{w c x}=\frac{N_{c}^{2}}{2} \delta^{a b}$,	
$f^{a v w} f^{x b y} f^{y w z} f^{z v x}=\frac{N_{c}^{2}}{2} \delta^{a b}$,	
	$f^{a w v} f^{b z w} f^{x z y} f^{y v x}=N_{c}^{2} \delta^{a b}$,
	$f^{x a y} f^{y c z} f^{z b w} f^{w c x}=\frac{N_{c}^{2}}{2} \delta^{a b}$,
	$f^{v a w} f^{w b z} f^{x z y} f^{y v x}=N_{c}^{2} \delta^{a b}$,

and similarly for the seven remaining diagrams.

Goals

¿ Subatomic Particles ? ¿ Forces? ¿ Spin?
¿ Baryons \& Mesons \& Hadrons ?

feel free to interrupt \& ask questions

siod Subatomic Particles

- Hundreds of subatomic particles exist, and new ones keep on being discovered (with the latest one being the $E_{c c}^{++}$, found at LHCb).
- An important distinction exists between elementary particles (that are indivisible) and composite particles (that are built from other particles, i.e. quarks).

$\mathrm{s}^{\prime} \mathrm{CoOl}$ LAB

Elementary

source: http://www.physik.uzh.ch/groups/serra/StandardModel.html

$\mathrm{s}^{\prime} \mathrm{CoO}$ LAB
 Composite

source: http://www.fnal.gov/pub/inquiring/physics/discoveries/images/BaryonChart_MR.jpg http://physicsworld.com/blog/Baryons\ Fermilab.jpg

Elementary Particles

- Three types:
- Fermions: matter particles
- Bosons: force carriers ("exchange particles")
- Higgs: special guy
- Difference lies in spin, but..

Elementary Particles

- Three types:
- Fermions: matter particles
- Bosons: force carriers ("exchange particles")
- Higgs: special guy
- Difference lies in spin, but..

Wikipedia:

"In quantum mechanics and particle physics, spin is an intrinsic form of angular momentum carried by elementary particles, composite particles (hadrons), and atomic nuclei.

In some ways, spin is like a vector quantity; it has a definite magnitude, and it has a 'direction' (but quantisation makes this 'direction' different from the direction of an ordinary vector).

All elementary particles of a given kind have the same magnitude of spin angular momentum, which is indicated by assigning the particle a spin quantum number."

Spin

- Spin is a vector, however, due to uncertainty in quantum mechanics, we cannot know all three components S_{x}, S_{y}, and S_{z} at the same time
- But we can know the length S and the z-component S_{z} simultaneously

- But spin is a quantum vector, which puts some restrictions on its possible values, as they are quantised (which means values go in steps)..

Spin

- The length needs to be a positive multiple of $1 / 2$, so $S=0,1 / 2,1,3 / 2, \ldots$
- S_{z} can be anything between $-\mathrm{S},-\mathrm{S}+1, \ldots, \mathrm{~S}-1, \mathrm{~S}$ This means that spin states come in multiplets.

$S=0$	$\rightarrow S_{z}=0$
$S=1 / 2$	\rightarrow
$S_{z}=-1 / 2,+1 / 2$	
$S=1$	\rightarrow
$S_{z}=-1,0,+1$	

$S=\frac{1}{2}$

$S=1$

$S=\frac{3}{2}$

Spin

- Typical example is the electron: it has spin $1 / 2$, which means it has two possible states:
$-1 / 2$ or $+1 / 2$
also known as 'up' or 'down'
- Now back to elementary particles..

Elementary Particles

- Three types:
- Fermions: matter particles \Rightarrow spin $1 / 2$
- Bosons: force carriers \Rightarrow spin 1
- Higgs: special guy $\quad \Rightarrow$ spin 0

EGoo Elementary Particles

- Two types of matter particles:
- Leptons: electrons, muons, taus, and neutrinos
- Quarks: don't exist alone, but combine to form hadrons (composite particles)
- Four fundamental forces:
- Electromagnetic: exchanged by photon
- Weak: exchanged by $\mathrm{W}^{+}, \mathrm{W}^{-}, \mathrm{Z}^{0}$
- Strong: exchanged by gluons
- Gravity: exchanged by graviton

ECCol Elementary Particles

- Two types of matter particles:
- Leptons: electrons, muons, taus, and neutrinos
- Quarks: don't exist alone, but combine to form hadrons (composite particles)

Three very cool and quantisable and not 'totally ignorable'

- Four fundamentat forces:
- Electromagnetic: exchanged by photon
- Weak: exchanged by $\mathrm{W}^{+}, \mathrm{W}^{-}, \mathrm{Z}^{0}$
- Strong: exchanged by gluons
- Gravity: exchanged by graviton-

Particle Properties

- Every force comes with an associated charge. If a certain particle does not have this charge, it will not interact with this force.
- Electromagnetic charge
- Weak hypercharge
- Colour (strong force)
- Fermions come in 3 families, the difference between the families being the mass.

$\mathrm{s}^{\prime} \mathrm{CoOl}$ LAB

Elementary

source: http://www.physik.uzh.ch/groups/serra/StandardModel.html

$\mathrm{s}^{\prime} \mathrm{CoO}$ LAB
 Composite

source: http://www.fnal.gov/pub/inquiring/physics/discoveries/images/BaryonChart_MR.jpg http://physicsworld.com/blog/Baryons\ Fermilab.jpg

Composite Particles

- Are called hadrons and are built from quarks. There are two types:
- Baryons: built from three quarks
- Mesons: built from a quark and an antiquark
- Quarks have fractional charge, but resulting hadrons need to have integer charge.

u	c	t	charge $+2 / 3$
d	s	b	charge $-1 / 3$

Baryons

- Simplest baryons are built from u and d quarks:
- Proton: und (charge $=2 / 3+2 / 3-1 / 3=+1$)
- Neutron: udd (charge $=2 / 3-1 / 3-1 / 3=0$)
- Anti-baryons are built from antiquarks:
- Antiproton: $\bar{u} \bar{d}$ (charge $=-2 / 3-2 / 3+1 / 3=-1$)
- Antineutron: ūd̄̆ (charge $=-2 / 3+1 / 3+1 / 3=0$)
- What about spin? Proton and neutron have spin $1 / 2$, but each quark as well... $1 / 2+1 / 2+1 / 2 \neq 1 / 2$?

$$
\text { spin }=\text { vector } \Rightarrow \text { vector sum ! }
$$

Summing Spins

- Spin is a vector, so should be summed as one. Vectors are not just summed by adding their lengths, because the angle between them matters
- The largest possible result is when both spin vectors are parallel ($\left.\left|S_{\text {too }}\right|=\left|S_{1}\right|+\left|S_{2}\right|\right)$, while the smallest possible result is when both are antiparallel ($\left.\left|S_{t o t}\right|=\left|S_{1}\right|-\left|S_{2}\right|\right)$.

Summing Spins

- As a quantum vector, not all values are possible for the length of the resulting vector, again only in steps: $S_{\text {tot }}=S_{1}-S_{2}, S_{1}-S_{2}+1, \ldots, S_{1}+S_{2}-1, S_{1}+S_{2}$
- Examples:

$$
\begin{aligned}
& 1 / 2+1=1 / 2 \text { or } 3 / 2 \\
& 3 / 2+2=1 / 2 \text { or } 3 / 2 \text { or } 5 / 2 \text { or } 7 / 2
\end{aligned}
$$

- And the case of 3 quarks:

$$
\begin{aligned}
1 / 2+1 / 2+1 / 2 & =(1 / 2+1 / 2)+1 / 2=(0 \text { or } 1)+1 / 2 \\
& =1 / 2 \text { or } 3 / 2
\end{aligned}
$$

Baryons

- So, using only u and d quarks, we can make a proton (uud) or a neutron (udd), but also two other particles which have the same quarks but different spin:
- Δ^{+}: und but spin $3 / 2$
- Δ^{0} : udd but spin $3 / 2$
- We can even make two more combinations:
- Δ^{++}: uuu (spin 3/2)
- Δ^{-}: ddd (spin 3/2)

Baryons

- The other quarks are way heavier than u and d :

$$
m_{s}=20 m_{d}=40 m_{u}, m_{c}=250 m_{d}=500 m_{u}
$$ which means that the resulting baryons will be much heavier as well

- Before quarks were discovered, only hadrons built from u, d, and s quarks were found. Some were acting 'normal', like a proton, but some were acting 'strange' (because - we know now - they contain an s quark). They were given a Strangeness

Baryons

- We know today that a hadron with Strangeness -1 contains exactly one s quark (similarly, Strangeness -2 implies two s quarks etc).
- The simplest spin $1 / 2$ baryons can be organised in an octet, called "The eightfold way"
- Strangeness $0: n, p$ Strangeness -1: Σ, Λ Strangeness -2: Ξ

Baryons

- Similarly, the simplest spin $3 / 2$ baryons can be organised in a decuplet
- Strangeness $0: \Delta$ Strangeness $-1: \Sigma^{*}$ Strangeness -2: Ξ^{*} Strangeness -3: Ω

S'Cool LAB
 Composite

source: https://en.wikipedia.org/wiki/File:Baryon_Supermultiplet_using_four-quark_models_and_half_spin.png

Mesons

- Mesons are built from a quark and an antiquark, and hence lighter dan baryons.
- As they are built from two quarks, their spin is $1 / 2+1 / 2=0$ or 1 .
- They are classified similarly to baryons, in function of their Strangeness.

Mesons

- The simplest spin 0 mesons can be organised in a nonet, originally called "The eightfold way" as well (because η^{\prime} wasn't found yet)
- Strangeness $+1: K$ Strangeness 0: π, η, η^{\prime} Strangeness -1: K

s'Cool LAB
 Mesons

- And the simplest spin 1 mesons can be organised in another nonet
- Strangeness $+1: K^{*}$ Strangeness 0: ρ, ω, φ Strangeness -1: K^{*}

Summary

- Subatomic particles can be elementary or composite
- Elementary particles can be fermions or bosons
- Fermions are matter, and are divided in leptons and quarks
- Bosons exchange forces
- Composite particles (hadrons) can be baryons or mesons
- Baryons are made from 3 quarks and are generally heavy
- Mesons are made from a quark and an antiquark and are lighter

Exercises

- Can a gluon interact with a photon?
- Can a gluon interact With a W+?
- Can a photon interact with itself? Why (not)?
- What is the only elementary boson that can interact with neutrinos without changing them?
- Can we have a meson with charge ++ ?
- What is the quark content of:
$\Lambda^{0} \quad$ (baryon, strangeness -1)
$D_{s}^{+} \quad$ (meson, strangeness 1, charmness 1)
Ω^{-}(baryon, strangeness -3)
$\Xi_{c c}^{t+}$ (baryon, charmness 2)

